

Getting More

from

your ORIC

Henry Hicks

ESigma Technical Press

Copyright © Henry Hicks, 1984

All rights reserved. No part of this book shall be copied or reproduced
without the prior permission of the copyright owner, except for small
excepts for the purposes of review or as provided for by current legislation
affecting the photocopying of copyright material.

ISBN: 0 805104 56 O

Published by: Sigma Technical Press, b Alton Road, Wilmslow, Cheshire,
SK9 5DV, U.K.

Typesetting and pr_oduction: ariginally input by the author on an Apple lle
using the Applewmer word processing package; subsequent typesetting
and production by Designed Publications Ltd.

Distributed by: John Wiley and Sons Ltd., Baffins Lane, Chichester,
Sussex, PO19 1UD.

Printed and bound in Great Britain by
J. W. Arrowsmith Ltd., Bristol

CONTENTS

]

tting Started

The Hardware

The ORIC-1, ORIC Atmos, New and Oid ROMs
The Cassette System

ORIC BASIC

Peripherals

Switching On

Hints and Tips

Nouobwih=

RIC’s BASIC

.1 Immediate commands

.2 BASIC Sytnax

.3 The PRINT and INPUT commands
.4 Arithmetic Commands

.5 Subroutines

.6 Looping

7

.8 READ, DATA and RESTORE

.9 Testing and Branching

.10 PEEK, POKE and Relatives

1
A
A
1
1

2 Arrays and Strings
3 CHRS$, Concatenation and Other String Functions

5 Graphics
Hires Commands

Inside the ORIC

3.1 The Main Chips

3.2 The Resident BASIC and Operating System
3.3 The 6502 Microprocessor

3.4 The 6522 Versatile Interface Adapter

QOABdPEN

3.5 The Late Array
3.6 The Memory Map
3.7 Character Sets
3.8 Mapping the Screen
3.9 Screen and Colour Control
Colour in TEXT mode
Colour in LORES mode
Colour in HIRES mode
3.10 Input and Output
The Expansion Connector
170 Line
170 Control
ROM Disable
MAP
3.11 Sound

How Computers Think
4.1 The Binary System
Binary Arithmetic
The B.C.D. System
B.C.D. Arithmetic
4.2 How Computers are Made
4.3 Program Storage and Execution
4.4 How BASIC Works
Memory Usage by BASIC

Practical Computer Applications
5.1 Principles of Input and Output
5.2 Parallel Communication

5.3 Serial Communication

5.4 ORIC's Printer Port

5.5 1/0 Via Page Three

5.6 Using an External 6522

5.7 Optical Isolation

Assembly Language Programming
6.1 Assembly Language for the ORIC
6.2 Addressing
Indirect Addressing
Indexed Addressing
6.3 Stack Operations
JSR and RTS
Branching
6.4 The 6502 Instruction Set

ORIC’s Operating System
7.1 System Calis

V1.0 Calls

V1.1 Cails

55

60
61
63
65
66
70

95
100
101
102
103
104
107
110

145
145
148

7.2 Soft Vectors
Soft Vectors (V1.0)
Soft Vectors (V1.1)
.3 Special Commands
7.4 BASIC Entry Points
V1.0 Screen Control
V1.1 Screen Control

7.5 Simple De-Bugging Techniques for Assembly Language

Useful ORIC Programs

8.1 Simple BASIC
Sideways Scroll {left)
Sideways Scroll {right)
Upwards Scroll
Downwards Scroll
Random Characters
Serial Attributes
Renumbering
String Arrays

8.2 LORES Graphics

8.3 HIRES Graphics
Plotter

8.4 Music
Twinkle, Twinkle, Little ORIC
Drink to Me Only
Bobby Shafto

8.5 Simple Machine Code

Appendix A: Control Codes and Serial Attributes
Appendix B: Token Table

Appendix C: 6502 Op-Codes

Appendix D: “Renumber” Source Listing
Appendix E: Real Time Clock

Appendix F: Writer Subroutine for 6502 Systems

Appendix G: Cassette Loader Program

150
151
151
151
153
154
155
157

160
160
160
161
161
161
162
163
166
167
168

170
172
174
176
185
187
188
192
194
196

197

CHAPTER 1

Getting Started

This book is intended for those people who own an CRIC computer with version
1.0 or 1.1 ROM, or the new ORIC Atmos (see Figure 1.1), and who want to
squeeze as much out of the machine as possible. All the standard facilities are
described, as well as some which are very much non-standard.

There are the expected sections on number systems and arithmetic to ensure that
the computer owner need only buy one book to satisfy most of his or her needs.

There is also a fairly extensive section about the microprocessor on which the
ORIC is based so that more advanced users can learn how to write programs in
Assembly language and thus make the most of their investment. This section
might also be of interest to those who own machines other than the ORIC but
based on the same microprocesor.

Figure 1.1

The designers of the ORIC-1 and ORIC Atmos intended that the machines should
form the basis of a computer system, with all the usual peripherals associated with
such a system, available to the owner. Already on the market s a four colour printer
which can also produce good quality graphics. A modem has been available for
some time, allowing users to access remote databases such as those provided by
the more far-sighted information providers, and a disc drive system based on 3
inch drives ts now available (see Figure 1.2).

Apart from the short description of the ORIC computers and their facilities which
follow in this chapter, it will be assumed that the reader has at least absorbed
enough of the manua!l supplied with the machine to put the right connectors into
the right holes and switch on.

1.1 The Hardware.

The ORIC computer is a 6502 based machine that is available in two sizes. The
smaller version has 16K of user memory and the larger has 48K. The two versions
are in fact physically different and so a home-based upgrade from the 16K version
to the 48K is not possible. This rather odd situation is brought about by the larger
machine actually having 64K of dynamic memory, the top 16K of which is masked
out by the internal program memory. The design of dynamic memory chips makes
it very difficult to allow upgrading from one memory size to another in a compact
system. Consequently there is a board layout difference between the two
machines. These should be thought of as two different computers which happen
to run the same operating system and the same version of BASIC. The
manufacturers of the computer do offer an upgrade based on a trade-in deal so all
is not lost.

The keyboard is an almost standard QWERTY layout with four extra cursor control
keys for editing purposes. The keys have tactile and audible feedback though the
latter is defeatable by typing CTRL-F. (Hold down CTRL and press F at the same
time. Usually printed as {F to save space.)

Along the back of the machine are the connections to the outside world. There is a
co-axial power supply socket which uses 9v D.C from a mains adapter. Next to this
is the expansion bus connector which has the bus and control lines for the 6502,
except for NMI, SYNC and RDY, and some special lines which give greater control
over the memory map. Next to this is the parallel printer port which is wired as a
Centronics standard interface. This port is not buffered however, so you can only
use short cable runs to the printer for reliable operation. The cassette output is
next with a relay connected across pins 6 and 7 to give remote control facilities.

Pins 4 and 5 of this connector allow internally generated sounds to be played
through an external amplifier system. There is an R.G.B. colour monitor connector
next to the sound socket for those with such a device. Certainly colour monitors
give a much crisper picture than the average T.V. set. Lastly there is the standard
UHF connector for the average T.V. set. The ORIC has two holes in the base
through which a screw head and an adjustable potentiometer can be seen. These
exist so the signal produced by ORIC can be adjusted to suit the T.V. set. A sort of

fine tuning capability. The internal modulator is set to approximately channel 36.

-

Figure 1.2: The ORIC Disk Drive and Printer

1.2 The ORIC-1, ORIC Atmos, New and Old ROMs

The ORIC Atmos is a recent development of the ORIC-1. It is very similar to the
ORIC-1 both in terms of its internal circuitry and its external appearance, the main
difference being the FUNCTION key, which is non-functional at present (future
versions of the Atmos will use this key for software control).

The Atmos is essentially an ORIC-1 with the new 1.1 ROM (Read Only Memory)
which contains all of the computer’s permanent software, such as the BASIC
interpreter and the operating system. This new ROM has some enhancements
when compared with the older 1.0 ROM (as used in the earlier ORIC-1) and the
1.0 ROM "bugs” have been removed. The new ROM is available to present ORIC-1
owners.

Because of the great similarity of the ORIC- 1 and ORIC Atmos, we shall henceforth
refer only to the 'ORIC’ for brevity. Aiso, we will refer to the old version of the ROM
as 'V1.0" and the new version as ‘V1.1°, again for brevity.

1.3 The Cassette System.

This is straight - forward to use and has a good pedigree, being based on the
Tangerine design which has worked well for many people for many years. The one
drawback, for users of the ORIC with the older V1.0 ROM, is the lack of a catalog
command, or its equivalent, so records must be kept of names of programs and
their positions on the tape. In V1.1 the computer names the programs as it meets
them and thus provides an effective catalog of the tape. This new system also
provides facilities for saving arrays and for merging programs.

1.4 ORIC BASIC.

The 48K version comes complete with a demonstration program showing the
various graphics and sound capabilities of the machine. After this program has
been run it can be listed to see how the various tricks are done. Note that this
program has been recorded at the optional slow Baud rate to ensure high
reliability. The program is rather long and takes over 6 minutes to load. To load this
program type CLOAD """ ,S(RETURN). If a printer is available, a listing of this
program would provide a valuable reference in programming the special techniques
for the ORIC.

The internal language for the ORIC is standard Microsoft BASIC with the
necessary additions to cater for the sound and graphics capabilities. The
arithmetic is full floating point with an accuracy up to 9 digits. The numerical range
is from 2.93874E10-39 to 1.70141E10+38.

Ful string handling is available with strings limited to 255 characters. Arrays can
also only have 255 elements and may only be one-dimensional.

Variables may have names of any length, but only the first two characters are used.

4

Allowable characters are the letters A-Z and the numbers 0-9. In addition, one of
three suffix types may be used. $ indicates a string, % indicates an integer and no
suffix indicates floating point.

The internal sound commands allow for the production of up to three pure tones at
any one time, with the facility to add in noise if required. The noise base frequency
may be varied and the envelope of the sound may also be selected out of a total
possible of seven types.

The display may either be all text in a mode which is very similar to Teletext, or it
may be nearly all graphics, with three lines at the bottom for text. Characters can be
in different colours, double or single height, flashing or static. Background colours
can also be varied.

The hidden key underneath the computer is connected to the NMI pin of the 6502
and provides a way out of program loops and crashes without destroying
programs or data. The screen is cleared when this takes place.

1.5 Peripherals.

As an optional extra, a modem is available which allows computer to computer
communication over the standard telephone lines. Obviously the two computers
must each know what is going on for this to work. Also available is a printer and a
micro disc drive (see Figure 1.2). The disc drive is an Hitachi three inch
mechanism, which is compatible with the standard five-and-a-quarter inch drives,
and these drives may be mixed in with the three inch ones on the same interface.
The interface used can support up to four disc drives at any one time.

1.6 Switching On.

When setting up ORIC for the first time, it may well be that the machine does not
start correctly due to the reset circuitry inside ‘seeing’ too slow arising edge on the
power supply line. If this is suspected, leave the external power pack switched on
and unplug the D.C.connector at the back of the machine. On pushing this
connector back in a reliable start up will be achieved. This can be tested without a
T.V picture because after a restart pressing any key on the keyboard will produce a
‘click’ sound if the ORIC is working. Note that restart can take a second or two after
switch-on to allow the machine to sort itself out.

After tuning in the T.V set to obtain a picture of ORIC'S workings, run the

demonstration program to finalise the adjustments as this program gives good
quality colour.

1.7 Hints and Tips.

For those who have never used a computer and cassette system before, a few
words of advice may not go amiss. Always use good quality cassettes with never

5

more than 15 minutes worth of tape per cassette. it is very tempting to use longer
cassettes for bulk storage but the longer the tape, the thinner it has to be tofit into
the cassette and hence the more likely it is to stretch. Also the oxide coating has to
be thinner with consequently greater chance of a bad film.

When editing a program, work with two cassettes. The program to be edited is on
cassette A and cassette B is blank. Make sure B is blank by using a bulk eraser.

Load the program from A and check that it is what you expected by listing it. (Note
that listing can be temporarily stopped by pressing the space bar. Pressing any key
will restart the listing.) After editing and testing, save the program onto tape B,
making a note of the program name and, if the tape recorder has a counter, the
reading of the counter at the start and finish. Tape A may contain more than one
program so it is not possibie to erase tape A until all programs have been
transferred to tape B. This is the second reason for using short tapes. After
transferring all programs from A to B, erase A completely with a bulk eraser and
now tape B is effectively the same as tape A was at the start of the editing session.

When you have finished a program and are happy with the results, save it onto at
least two cassettes. This technique, known as backing up, is of great importance
and should ideally be used at all times. Note that during the editing session (until
final testing of tape B) two copies of each program exist, those on tape A and the
edited versions on tape B. If anything goes wrong with tape B there is always the
previous copy to fall back on.

A completely organised system actually uses at least three cassettes. One blank
one for recording the edited versions and two originals, one of which is used to
provide the programs for editing and the back-up copy which is kept in a safe
place. When the edited programs are fixed on tape B, the first two tapes are bulk
erased and re-programmed one at a time, testing the first before erasing and re-
recording the second.

This all seems like a lot of fuss and bother which will merely increase the time and
effort needed in editing. There is no denying that it is a fair amount of work.

Programmers who work on main-frame machines are fortunate in that most of this
work is done for them by the operating system. When a new program is edited, a
back-up copy is made by the system automatically. However, the first time a
cassette program fails to load sucessfully after spending days getting it just right,
the wisdom of having a back-up copy will become only too plain.

CHAPTER 2

ORIC’s BASIC

There must be very many people who, wondering what all the fuss over
microcomputers was about, have gone out and bought a microcomputer to satisfy
their curiosity. Some of these people may still be wondering. The answer liesin the
fact that computers can be used to do almost anything provided they are
programmed correctly. Thus a standard piece of equipment can be used for avery
wide range of applications. It does not matter what the problem is, a computeris
the answer. If this sounds too good to be true, take comfort in that it is too good to
be true, but only just - the manufacturers can now make computers without
knowing, or caring, what their machines will be used for and consequently they
can be mass produced very cheaply. The microprocessor in your ORIC costs a
mere £4 or so retrail. To make the thing into a machine like the ORIC costs a lot
more, partly because a microprocessor needs extra bits and pieces attached toit to
make it do anything remotely useful, and partly because of the programming
language required. The ORIC is aiready programmed to understand a language
called BASIC. This is an acronym for Beginner's All Purpose Symbolic Instruction
Code. After you have spent a few hours playing with your computer, using this
supposedly simple language, you will realise how long it takes to write a program
that really works as you want it to. Time is money.

What is a program? The word has been used several times already and has not yet
been defined. Programming and computers are inseparable and in some ways
indistinguishable. A program is a series of instructions which must be obeyed
exactly. There is no choice. Thus a recipe might read:

“take 1 egg.
now beat it.

While this can be called a program it is undesirable because it is ambiguous. To
avoid this computer programs are written in special languages each word or
character of which is defined exactly. At one time, in England, French was used
exclusively as the legal language because it was, and still is, a language where
every word is defined by a committee as having a certain meaning. Consequently,
no ambiguity.

The language the ORIC uses is also defined exactly, as it must be, and the

computer will always do exactly what it is told. if your program gives the wrong
answer, be assured that it is your program which is at fault. The Americans have
characterised this phenomenon with typical transatlantic brevity as GIGO. This
stands for Garbage In, Garbage Out.

2.1 Immediate Commands.

A computer can be made to obey commands in two ways. The commands can be
part of a program which the machine is following, or they can be typed in on the
keyboard followed by (RETURN).

PRINT is a very useful command. For example type in:-
PRINT “HELLO THERE"{RETURN}.

Where (RETURN) means ‘press the RETURN key'. The computer will respond by
printing 'HELLO THERE' on the screen. The PRINT command has been obeyed
immediately and for this reason it is referred to as an ‘immediate’ command.

Practically all the ORIC’s commands can be used in immediate mode. Multiple
commands can be typed in by ending each one with a colon. For example:-

ZAP:EXPLODE:PING:SHOOT(RETURN])

will result in all the pre-programmed sound effects being produced.

2.2 BASIC Syntax.

The internal language must be used according to its own grammatical rules. This is
demonstrated by using the PRINT command in a simple program:-

10 PRINT “"HELLO THERE"
20 END

When typing this in end each line with (RETURN). This program will not actually
do anything until the magic command RUN (RETURN) is typed. Then the program
is obeyed and 'HELLO THERE' is printed out again.

Notice that each line starts with a number. This is to help both you and the
computer to keep track of where you are. Line numbers are all part of the language.

BASIC demands that all programs are written as a series of statements or
commands splitup into lines and thateach line be numbered sequentially. In some
earlier BASICs the first character after the line number had to be a space, although
this is not so on the ORIC.

Syntactically this is represented as:-

XXspSTATEMENT (RETURN)

where XX=line number.

The second line of the program tells the computer to stop. This may seem rather
strange, but some of the earlier versions of BASIC have to be told this, or they will
try to execute whatever follows the last statement as if it were part of the program.

The results of such an attempt can be catastrophic. The ORIC is a bit more clever
than that and does stop at the end of a program whether or not there is an END
statement.

You can find out what the current program looks like by typing LIST (RETURN).

The response to this command is to print out the program as it was typed in. The
LIST command can be modified for editing purposes as LIST 20 (RETURN) and
only line 20 will be printed. It can also be included in a program so that the program
runs and then lists itself.

When writing test programs it is a good idea to use the command NEW between
each test. This command tells the computer to forget all about previous programs
and start again. This prevents any lines of an old program being included in a new
one. This command can be included in a program so that when the program s run,
at the end of the run it clears itself out of memory and cannot be listed.

In any program it is considered obligatory to put in statements saying what the
program is doing. These statements are called ‘remarks’ and must either be
prefaced by REM or you can just type in ",

100 REM ROUTINE TO FIND AREA
110 A=B*H/2 "HALF BASE TIMES HEIGHT
120 RETURN

Putting in remarks seems an awful waste of time and space. But, when a program
is unearthed after a month or so because it is needed to solve a current problem the
lack of remarks in it is absolutely criminal. There is a special command which is
only usable in immediate mode called 'EDIT’. This command uses a line number as
its argument and allows immediate editing of any line in a program. To use this
command type, for example, EDIT 10 (RETURN) where the line number mustbe a
valid one. The standard copy facility can now be used (1A} to copy those parts of
the line that are to be kept, the arrow keys can be used to skip those parts which are
not wanted and new parts can be added as normal. Note that if you overtype the
old line, it is what you see on the screen that will be entered as the new line.

2.3 The PRINT and INPUT Commands.

When our simple program was run, you may have noticed that the smal! white
block called the cursor moved to the start of the next line after the printed 'HELLO
THERE'. The computer has actually had to obey two extra commands to do this.

The first of these is ‘CARRIAGE RETURN’, or more usually just ‘RETURN’. This

9

command moves the cursor to the beginning of the line that it is on. The second is
‘LINE FEED' and this moves the cursor down one line. If an attempted LINE FEED
would result in the cursor moving off the bottom of the screen then instead of
moving the cursor down the computer moves the text on the screen up. This is
called ‘scrolling’.

If the simple program is altered to:-

10 PRINT "HELLO THERE";
20 END

the semi-colon tells the computer not to execute the RETURN and LINE FEED.
When RUN the cursor is now left at the end of the printed text.

The PRINT command makes the computer talk back. The INPUT command allows
the user to talk to the computer. Another example:-

10 PRINT “"GIVE ME A VALUE FOR X"
20 INPUT X

30 Y=X*2

40 PRINT "2 TIMES ";X;"=";Y

50 END

Line 10 makes the computer tell you what it wants. This is the beginning of
interactive programming. If the program said “GIVE ME A VALUE FOR X
PLEASE” it could be called ‘user friendly’. Line 20 makes the computer accept the
entry from the keyboard as the variable X. If something other than a number was
entered in response here, the computer would not understand and would give an
error message as "REDO FROM START". The program tells the computer to
expect a number and when it is given something else it tries to deal with it as a
number, gets into difficulties and has to give up.

Line 30 tells the computer to take the number just entered, muitiply it by 2, and
save it as the variable Y.

Line 40 looks complicated at first, buttaken one part at atime itis straightforward.
This is how the computer will interpret it:-

PRINT (send what follows to the screen).

“ " {everything between these is sent to the screen as is)
: {do not send RETURN or LINE FEED)

X (print the current value of X)

; (do not send RETURN or LINE FEED)

" {everything between these is sent to the screen as is)
: {do not send RETURN or LINE FEED)

Y {print the current value of Y)

A sample run of this program would give:-

10

GIVE ME A VALUE FOR X
?5
2 TIMES 5= 10

Notice the ? requesting an input from the keyboard. This is generated by the use of
the command INPUT. Also notice that it would have been better to put another’;’
at the end of line 10 to get the "?” on the same line as the question. In fact the
INPUT command can be used to do the job of lines 10 and 20 as:-

10 INPUT”GIVE ME A VALUE FOR X"; X
And the result will be the same as line 10 with a *;" and line 20.

The description of how the computer decoded the PRINT statement in line 40
demonstrates the power of the computer and its vulnerability. The power lies in
the fact that the way the computer behaves is determined by the program it is
processing. Changing line 40 can completely change the way the computer
presents the information. However, if the computer meets something in line 40
which is out of context (like answering FRED when a number is requested) it
cannot handle it and the program is stopped and an error message printed. The
program is said to have ‘crashed’. More on this later.

Two commands exist which can only be used as part of a PRINT statement. These
are SPC and TAB. Both of these commands have one argument.

The SPC command tells the computer to print the required number of spaces
starting at the current cursor position. For example PRINT SPC({10);”"FRED"
would result in 'FRED’ being printed 10 spaces to the right.

Sadly there is an error in version 1.0 of the ORIC which renders the TAB command
virtually useless. In fact it does nothing with arguments less than 13 and then
behaves as the SPC command. However this has been corrected in version 1.1,

There is one other peculiarity in V1.0 which is that the PRINT AB type of
command will not give the expected results, probably because TAB does not work.
Again version 1.1 has corrected this.

There are two more commands which aliow entry from the keyboard. These are
GET and KEY$. Our short program could be modified to:-

10 PRINT “GIVE ME A VALUE FOR X"
20 GET X

and this would behave as before except there would be no ?' to prompt you. The
differences between GET and INPUT are: the INPUT command can be used with
text; generates the ‘?" prompt and waits for the entry to be terminated by
(RETURN]}: the GET command cannot be used with text; does not generate a
prompt and reports each key as it is pressed.

The KEY$ command also only requires a single keystroke entry. It will read in the

11

character corresponding to any key that i1s pressed as it is pressed. However,
unlike INPUT and GET, KEY$ does not hait program execution until a key is
pressed. To demonstrate this try these two short programs:-

10 GET A%
20 PRINT A%
30 GOT0O 10
and

10 A$=KEY$
20 PRINT AS$
30 GOTO 10

When the first program is run, the PRINT command is only obeyed after the
RETURN key is pressed. To stop this program you will either have to switch off or
use the hidden button underneath the machine. The second program however

prints out each character as it is entered and it can be stopped by typing CTRL-C.
There is an extra command in V1.1 which is PRINT @ X)Y;STRING where

STRING represents any valid argument for the PRINT command. The effect of this
command is to print STRING on the screen starting at the absolute co-ordinates
X.Y. Thus PRINT @ 10,12;“HELLQ" would give HELLO on the screen 10 spaces
in from the left hand edge and 12 lines down.

2.4 Arithmetic Commands.

The ORIC computer has a full range of arithmetic operators and functions. You will
see that “* is used for multiply, */ for divide and ' 1* for ‘raise to the power of’. '+
and ~" have their usual meanings. X is not used for multiply because it would
be confused with the variable X'. Computers usually do arithmetic just as taughtin
school. The statement 3+4*5 will result in 23 as the answer. The statement
{3+4)*5 will give 35.

Brackets are used as normal to prevent ambiguity. Indeed, the computer will not
return two answers to a sum even if you think it is ambiguous. The computer has
its rules and it follows them. For example the sum 3+12/6*2 could give the result
4 or it could be 7. To the computer the answer is 7. The computer will do division
first, then multiplication then addition and subtraction.

The mathematical functions available are:-

ABS gives the absolute value of a function. That is the numerical value regardless
of sign.

10 PRINT ABS({-7)
will resuit in *7° being printed.
ATN gives arctangent in radians. Translated this means the angle inradians whose

tangent is supplied. Thus A=ATN(.7) gives a value for A of .611 radians. There
being 2PI radians in a circle this is an angle of 35 degrees.

12

COS gives the cosine of an angle in radians. SIN and TAN give the sine and tangent
of an angle respectively.

EXP gives the natural exponent of the number supplied. A=EXP(2) gives 7.389
etc. This is the same as the natural base ‘e’ squared.

LN gives the natural logarithm. This is the opposite of EXP.
LOG gives the logarithm to the base 10 rather than ‘e".

Pl simply gives a numerical approximation to this constant.
INT gives the integer part of the number supplied.

SQR gives the square root of the number.

For games and other purposes there is a RND conwnand which produces a
pseudo-random number. It is called pseudo-random because it is not a truly
random number as generated by ERNIE but has a numerical base and hence is
predictable to some degree. Since a computer of a reasonable size would be
needed to make the prediction this is not of any great consequence.

A=RND(1) will produce a random number between O and 1. In fact any number
greater than or equal to 1 in the brackets has the same result. If O is used the last
calculated number is returned. if a negative number is used the results cease to be
random and the same number is produced for each negative number. So -1 will
always give the resuit 2.99196472E10-8.

In some arithmetical problems it is necessary to know whether a number is
positive or negative, or maybe zero but not necessary to know how big the number
is. This function is achieved by the command SGN which returns -1 if the number
is negative, O if the number is zero and 1 if it is positive. This sort of test might be
used as a first step in finding the roots of a quadratic or higher order equation. For
example in this equation:-

X12-3X+2=0
The problem is to find X. In the computer the equation is stored as a variable Y :-
Y=X12-3*X+2

and this would be calculated by a subroutine. For more information on subroutines
see section 2.5.

1000 Y=(X12-3*X+2}
1010 RETURN

assuming that the values of X which satisfy this equation are known to lie between

0 and 10 (this is not unreasonable because in reality some knowledge of the
problem would be avalable) we could then write:-

13

10 CLS

20 X=0:GOSUPR 1000:A=SGN({Y)
30 REPEAT

40 X=X+.5

50 GOSUB 1000

60 UNTIL SGN({Y)=-A

70 PRINT X

80 END

if you RUN this program, you will find that this gives an answer for X of 1.5. Thus at
this value Y has changed sign and hence 1.5 must be near a root. If line 40 is
changed to X=X+.1 the program takes longer to run but comes up with the answer
1.1. This is leading towards a sucessive approximation technique for solving
equations.

2.5 Subroutines.

A subroutine is a device for repeating a fixed section of code at any time in a
program. One example has been shown already, admittedly rather trivial. Here is
another simple example:

10.GOSUB 1000

20 B=A

30 GOsuUB 1000

40 PRINT B;"TIMES ",C,"=";B*C

50 END

1000 INPUT "GIVE ME A NUMBER";A
1010 RETURN

The command GOSUB 1000 tells the computer to go to line 1000 and execute
the commands it finds there as normal until it finds the command RETURN. Itthen
must go back to the command following the GOSUB.

A large program should be made up of a series of subroutines which are called as
required by the main procedure. There will sometimes be sections of program
which are never repeated and these may be in the main procedure and notcalled as
subroutines. However, it is often the case that a programmer has a subroutine
already written from a previous program which does exactly what he wants and he
will use this and call it as a subroutine even though it is only used once.

A more advanced type of GOSUB is the CALL gommand which tells the computer
to go to a subroutine which is written in machine code. The CALL command
specifies the start address of the subroutine which must end with an RTS
instruction. {The machine code equivalent of RETURN). The machine code
instructions have to be POKE'd into memory one byte at a time.

There is a special type of subroutine called FN which applies to arithmetical

operators. The required formula is defined using DEF FN and can then be used as
many times as required. Here is an example:

14

10 DEF ENA(X)=2*P}{X12)
20 FOR I=1 TO 10

30 PRINT "AREA= ";FNA(l)
40 NEXT

50 END

When you RUN this program, it prints out the areas of ten circles of radii 1 to 10.

More than one function may be defined and used at once. The above program
could be extended to include:-

15 DEF FNB(X)=2*PI*X
35 PRINT CIRCUMFERENCE= “;FNBY(l)

and the circumferences and areas of the ten circles are printed out.

A subroutine may cail another subroutine, which in turn may cal! a third and so on.
This is known as ‘nesting’ subroutines and the ORIC will support nestingupto 16
levels. When nested subroutines are used there is a special command which
allows the RETURN command to skip a level. To demonstrate this properly
requires the use of the TRON facility which tells the computer to print out each line
number as it executes it. By this means we can follow the execution of a program
as it runs. Try this example:-

10 CLS

20 TRON

30 GOSUB 1000

40 IF B=10 GOTO 60
50 GOTO 30

60 PRINT B

70 END

1000 A=A+1

1010 GOSUB 2000
1020 RETURN

2000 B=2*A

2010 IF B<9 THEN POP
2020 RETURN

If you RUN this program, you will find that the printout is 30, 1000, 2000, 2010,
2020, 40, 50, 30, 1000 etc. finally reaching 70. At line 30 the first subroutine is
called, which in turn calls the second. At line 2010 the test passes and so the
return stack is POP’ed. Line 2020's RETURN therefore sends the program back to
line 40 and not to line 1020. In this program line 1020 is only executed once, just
before the program completes.

2.6 Looping

One advantage that computers have over mere mortals is that they will do the
same thing over and over again very quickly and accurately without getting bored

15

and without making mistakes. There are two standard methods of making the
computer repeat itself in BASIC. Firstly if the number of repeats to be done is
known the FOR-NEXT loop is used.

10 FOR =0 TO 10

20 PRINT "THIS IS LOOP™;|
30 NEXT |

40 END

This program will print out the message eleven times, followed by the value of { for
each time through the loop. The computer will interpret this program as follows.
Onseeing line 10 it will create a variable | and set it to zero. It will alsosetline 10 as
the return address for future reference. At line 20 it will print the message and the
value of | all on one line. At line 30 it will go back to the stored return address and
add one to 1, testto see if | is greater than 10 and, if not, it will go to line 20 and so
on. When the testin line 10 results in | being greater than 10 the computer will not
carry on through line 20 but will go to the statement following line 30.

Any variable could be used instead of | suchas A or B or C. Itis just tradition to use |
as the counter in a loop.

As an aside it is quite permissible to have a counter which is stepped by non
integer amounts. Thus a program might be:-

10 FOR 1=0.5 TO 4.5 STEP 0.1
20 GOsUB 100

30 PRINTY

40 NEXT |

In this program it is assumed that the subroutine at line 100 will calculate Y from 1.
Such a program segment might be used as part of a package to plot a polynomial.

There is a minor error in the ORIC's BASIC for step sizes less than one. The last run
through the loop may be left out and the loop terminated sooner than normally
expected. This is easily compensated for by setting the final value at one step size
greater.

The second method of setting up a loop can be used when the exact number of
times the loop has to be executed is not known, but the condition for exit is. This is
a REPEAT-UNTIL loop.

10 REPEAT

20 X=X+1

30 A=POINT(X.Y)
40 UNTIL A=-1

This program segment tests points across a screen line until it finds one which is in
the current foreground colour.

REPEAT-UNTIL loops can be nested in the same way that subroutines can, and

16

there is a similar command to POP to skip one level. This is the PULL command
and its use is demonstrated in the following program segment which again uses
TRON to show what is happening.

5 TRON

10 REPEAT

20 A=A+1

30 REPEAT

40 B=2*A

50 IF B<10 THEN PULL
60 UNTIL B>9

70 UNTIL B=10

80 PRINT A

If you RUN this program, you will find that the trace shows execution as
10,20,30,40,50,60,20,30,40,50,60,20 etc. The first execution of line 20 will
resultin setting A to 1 because on seeing A for the first time the ORIC will give ita
value of zero. At line 40 B will be 2. Atline 50 B is less than 10 so the repeat stack
will be pulled. At line 60 B is less than S so the program wiil go back to the next
repeat$address on the stack. Since one address has been pulled it goes back to
line 20. This program does nothing useful except to demonstrate PULL.

2.7 LET.

The LET command is becoming obsolete in BASIC. Its original use was to tell the
computer to assign a value to a variable. The statement LET A=10 told the
computer to set the variable A to 10. In the ORIC the statements LET A=10 and
A=10 do the same job.

2.8 READ,DATA and RESTORE.

READ and DATA statements are useful for programs which perform a fixed
operation on a series of unrelated variables. An example might be a program to
play a simple tune:-.

10 PLAY 0,0,0.0

20 READ A

30 PLAY 1,0,2,1800

40 IF A=-1 THEN GOTO 100
50 MUSIC 1,3,A.6

60 WAIT 20

70 GOTO 20

100 PLAY 0,0,0,0

110 END

200 DATA 1,2.3.4,5,6,7.8~1

Tunes cannot be much simpler than this but it does demonstrate READ and DATA.
The PLAY and MUSIC commands will be more fully explained later.

17

When dealing with READ and DATA commands it is sometimes necessary to go
through the same data more than once. The READ command uses an internal
pointer which is set to the start of the first line containing DATA as its first
command. {t is not usual to mix DATA with any other commands on the same
line.The RESTORE command. sets the pointer back to its position before any
READs were carried out. For example:

10 DATA 1,2,3,4,5.6,7.8.9,10
20 FOR I=1TO 4

30 READ A:PRINT A

40 NEXT |

43 RESTORE

45 PRINT "#wsesxs

50 FOR =0 TO 9

60 READ A:PRINT A

70 NEXT |

This program will print out the numbers 1 to 4 then a row of asterisks then the
numbers 1 to 10. Any more READ commands will fail because there is no data left.

2.9 Testing and Branching.

A commeon requirement in programming is to test for a certain condition and to do
one of two things depending on the result. FOR-NEXT loops and REPEAT-UNTIL
loops both use tests in their operation. There is a test facility available to the
programmer which can be used in almost any application. This is demonstrated
below.

10 INPUT"WOULD YOU LIKE TO PLAY A GAME";N$
20 IF N$="YES” THEN 100

30 PRINT “0.K..BYE FOR NOW"

40 END

100 INPUTHARD (H) OR EASY(E)";N$

etc.

Line 10 gets aresponse from the keyboard and line 20 makes a decision based on
that input. If the answer is "YES' exactly the program will jump to line 100. If the
answer is anything else the program will go to line 30.

A conditional test can also be performed with numerical values in a program. For
example:

10 IF A=0 THEN B=0 ELSE B=1
This statement sets B to one of two values dependent on the value of A,

if the program requires multiple branching then the best way to achieve this is
through the ON-GOTO or ON-GOSUB commands.

10 INPUTOPTION REQUIRED,0 TO 10™;A

18

20 ON A GOTO 100,200,300,400,500,600,700,800,900,1000
100 PRINT “YOU CHOSE 1t~

110 END

etc.

For the program to work properly there would obviously have to be lines 200,300,
etc. all of which were valid. Line 20 will send the program down a specific path as
chosen by A. If A=1 the program will go to line 100. if A=2 it will go to line 200
and so on. Note that if A is not an integer the program will only use the integer part
of A. If in the example an answer of 1.5 is given the program will treat this as if it
were 1.

In the case of ON-GOSUB the action is the same except that the program expects
to meet a RETURN command and it will then come back to the next line after the
ON-GOSUB command.

10 INPUT "GIVE ME A NUMBER FROM 1 TO 5";A
20 ON A GOsSUB 100,150,200,250,300

30 PRINT “ALL DONE"

40 END

100 PRINT "YOU CHOSE 1"

110 RETURN

150 PRINT “YOU CHOSE 2~

160 RETURN

etc.

Thus the subroutine used is dependent on the entry provided.

2.10 PEEK, POKE and Relatives.

There are four commands which relate to memory inspection and change. These
are PEEK, POKE, DEEK and DOKE all of which sound samething like the nephews
of a cartoon character. PEEK is exactly what it sounds like. |t tells the computer to
look inside a memory location and report what it finds. PRINT PEEK({49152) will
give 76 because that is the start of the ROM controlling the ORIC.

POKE is the opposite to PEEK in that it allows the contents of a memory location to
be set to a new value. That value must lie between O and 255 or the message
ILLEGAL QUANTITY ERROR will be printed.

We can use POKE to change a location and PEEK to check that it has been
changed. Type CLS (RETURN) to clear the screen and then POKE 48618,65
(RETURN). You should see an ‘A’ in the middle of the screen. Typing PRINT
PEEK(48618) (RETURN) will result in 65 being printed out because that is the
code value of the "A’ just POKE'd in. This is actually the decimal equivalent of the
value stored in the byte at that location.

19

DEEK and DOKE do the same sort of things but to two consecutive memory
locations at once. However, there is an added complication with these two
commands. The microprocessor at the heart of the ORIC has one or two
peculiarities. One of these is that it uses its addresses backwards. In this context
an address is simply the number by which a location is known. Each address is
assumed to require two bytes to fully describe its position. Even the location at the
start of memory is referred to as address 0000. (This method of numbering may
be unfamiliar. If so please refer to Chapter 4 for a full explanation).

Consider a location somewhere in memory with a general address of XYAB. the
value XY is held in one byte and AB in another. The processor in the ORIC would
refer to this address as ABXY and not XYAB. For this reason DEEK and DOKE
reverse the order of the two memory locations when they operate on them.

To fully understand these two operators it is necessary to have an understanding
of how the internal microprocessor actually works. DEEK and DOKE are not really
of much use otherwise.

2.11 ASCIL

This is a method of representing alpha-numeric characters by numbers. When you
type ‘A’ on the keyboard the computer actually receives the number 65. ‘B’ is
represented by 66 and so on. Even the number keys on the keyboard are
converted to their equivalent ASCll codes when they are entered. ‘4’ would be
received as 51. This may seem very strange at first but there are good reasons
behind this apparent madness. To learn some of them the reader is directed to the
appropriate section in Chapter 5. It is sufficient for now to know that this happens
and that a number may be held in the computer as a number known as its ASCII
code. For example:-

10 INPUT A%
20 PRINT A$

if in response to line 10 the sequence ‘12'(RETURN) is entered then ‘12" would
be printed out but the computer would be holding in its memory the numbers 49
and 50 as the ASCH codes for ‘1" and ‘2’ respectively. If instead the program
were:-

TO INPUT X
20 PRINT X

and again '12" were entered, you might expect the result to be the same. However,
this time the computer is holding 12 in its memory. To demonstrate that this is so
try changing line 20 as :-

20 PRINT 2*A$ for the first and
20 PRINT 2*X for the second.

The first program now will not run because the computer cannot multiply strings.

20

How do you calculate 2*"HELLQ""?

The ASCII codes O to 32 are reserved for control functions such as CARRIAGE
RETURN (13), LINE FEED (10) and ESCAPE ({27). Some of these codes are
produced by special keys on the keyboard and more are available by holding down
CTRL and simultaneously pressing another key. A complete list of such codes and
how to produce them is given in Appendix A.

2.12 Arrays and Strings.

There are occasions when itis useful to be able to store numbers as a set, and to be
able to access any member of that set. Such a set of numbers might be the ages of
the children in a class. To handle such sets the computer can put these numbers
into an "array’. Consider the example below:-

10 DIM A(10)

20 FOR =0 TO 10

30 INPUT "AGE= ";A(l)
40 NEXT I

Line 10 tells the computer to set aside sufficient memory for 11 variables in the
array cailed ‘A", You might have expected only 10 variables but the first entryin the
array is A(O) not A(1). The remaining lines read in 11 entries from the keyboard
and store them as variables in the array. Now any entry in the array can be accessed
by referring to its position in the array. For example A(5), and the position (5} may
be the result of a previous calculation. This allows the construction of tables, such
as train time-tables, and the required entry can be ‘looked-up’ by calculating its
position in the array.

A string array is a ‘string’ of characters all held together as an array. An example we
have already seen is:-

10 INPUT A%
20 PRINT AS$
30 END

When this simple program is run, any printable characters can be entered. When
RETURN is pressed the characters entered will be printed out. The length of A% in
this case is restricted to 1 1 characters.ORIC wili have reserved a space for an array
of 11 characters whenitfirst met A$ inline 10, and any attempt to enter more than
that wili resultin the message EXTRA IGNORED. in other words ,all the typing over
and above 11 characters was wasted. To get alonger string ORIC must be told that
the space is needed, and this is done using DIM. Modify the above program to
include:-

5 DIM A$(20)

Now arrays of up to 21 characters can be entered directly. Due to the fact that the

21

ORIC has a buffer into which all characters entered from the keyboard are stored
and that this buffer is only 78 characters long, we can only enter 78 characters into
an array by this method. Strings can be added together using the ‘+ sign, called
concatenating, and consequently strings longer than 78 characters can be buit
up. The absolute maximum length for an array is 256 characters. Obviously an
array must be dimensioned by a statement similar to the one above, but with 255
instead of 20, in order to achieve this, Any attempt to exceed the dimensioned
number of characters will result in the message ‘STRING TOO LONG IN 250’ or
whatever the line humber happens to be.

The CLEAR command will set all entries in arrays and strings to zero, or empty.
When an array is dimensioned, space is set aside for it which will still contain
whatever was last put into that space. The CLEAR command will clear out ail this
rubbish. This is necessary when building up a string or when using entries in an
array to accumulate resuits of a calculation. The array must first be set to zero or
the original rubbish will be added in to the answers.

2.13 CHRS, Concatenation and Other String Functions.

The CHR$ function (pronounced CARS) tells the computer to make up the ASCII
character that corresponds to the value given. PRINT CHR$(65) will result in A
being printed on the screen. CHR$ can be included in other strings by the use of
‘+'to concatenate or link strings together.

10 A$=CHR$(65)+"BILITY"
20 PRINT A$

and ABILITY will be printed out. This facility is useful for making up strings which
are headed by control and/or escape codes to control what happens next. As an
example try:-

10 CLS

20 P$="HELLO THERE"”
30 B$=CHRS$(27)+"W"
40 F$=CHR$(27)+ ' @"
50 T$=CHR$(27)+"L."
60 AS=BS$+F$+TS$+P$
70 PRINT A%

When run this program gives a flashing “HELLO THERE" in biack on a white
background. By changing the attributes in lipes 30 and 40 any background colour
and any foreground colour can be obtained.

One interesting effect is to change line 60 to:-

60 A$=B$+T$+P$

And when run, nothing is there. Now type INK O and the writing appears.

22

The other main string handling commands relate to string picking- a method of
picking out just part of a string. Suppose a program required a YES/NO answer
from the operator:-

10 INPUT"YES OR NO";A$

20 IF LEN(A$)>3 THEN 100

30 IF LEFT$(A$.1)="Y" THEN 1000
40 IF LEFT$(A$,1)="N" THEN 2000
100 PRINT “BAD REPLY”

110 GOTO 10

line 20 tests how long the reply is. Clearly if more than 3 characters have been
entered the reply was not YES or NO. Lines 30 and 40 compare the first character
inthe string with Y and N respectively. If an equality is found the program branches
to the appropriate place. If not it ends up in the error routine at line 100.

The command LEN simply returns the length of the string entered in response to
the question inline 10. This has nothing to do with the DIM statement nor with any
other commands that may set aside space for strings. The length of a string is
calculated by counting characters until the character representing RETURN is
met. There may well be space left over for more characters but this will be unused.

The LEFT$ command is part of a set of 3 commands used for string picking. The
complete set is LEFT$, RIGHT$ and MID$. LEFT$ picks out characters starting
from the left hand end of the string. In the example above, only one character, the
first, was picked. Any number of characters may be picked up to the length of the
string, and beyond. If a string only has 3 characters, asking for LEFT$(A$.4) will
return only 3 characters.

RIGHT$ works in the same way as LEFT$ except that counting starts from the
right hand end of the string. Thus RIGHT$(A$,3) of ASSAY would return ‘SAY".

MID$ is more complex having one more variable to be defined. This command
returns the middle section of a string starting at a specified character and
continuing for a specified number of characters. MID$(A$,2,2) of ARRAY would
return ‘RR’. The picking starts at the second character and continues for 2
characters. MID$(A$,3,5) of ASSEMBLY would return 'SEMBL".

Lastly STR$ converts a numerical expression into an ASCII string. This command
has some applications in print formatting. For example, having calculated an
answer, it may be easier to combine its string representation with a description, as
in this program:

10 A$="THE SQUARE IS

20 INPUT"GIVE ME A NUMBER";A
30 A=A1A:B$=STR$(A)

40 P$=AS$+B$

50 PRINT P$

23

By stringing together the items to be printed the exact position of eachitemonthe
screen can be predetermined and hence the display can be formatted correctly.
The opposite of STR$ is VAL. This returns the numerical value of the string. For
example A=VAL(1$) would put the numerical value of I$ into the variable A.

The number of significant figures used in the answer can also be controlled by the
use of LEFTS. If line 30 is changed to

30 A=AIA:B$=LEFT$(STR$(A},3)

the result will be printed out as N. only. The decimal point takes up one character
position leaving only two for numbers and one of those seems to be lost in the
conversion. If instead of the 3 a § is substituted answers will be printed as N.NN .

2.14 WAIT.

Sometimes programs run too quickly for the operator to see what is happening. To
prevent this the WAIT command can be used to slow things down. WAIT has an
argument (N) which has a base of 10 milliseconds. A command such as WAIT
100 would resuit in a delay of 1 second. For example this program goes too
quickly to see what is happening:-

10 CLS

20 REPEAT

30 I=l+1

40 PRINT SPC{1);"*;
50 PRINT CHR$(#0D);
60 UNTIL 1=28

70 END

This program is difficult to watch because of the speed of operation. Insertthe line
45 WAIT 10 and when RUN everything is clear.

2.15 Graphics

The ORIC computer has 3 ways of controlling the display. These are the TEXT
mode, two LORES modes and the HIRES mode. When you first switch on the ORIC
the machine starts up in the TEXT mode. In this mode the standard character set is
used to display information to the user, and only a small amount of memory space
is needed.

The two LORES modes might be described as chunky graphics modes. The
difference between the two modes is merely which character setis in use. LORES
0 uses the standard set and LORES 1 the alternate one. The graphics available in
both LORES modes are based on pre-defined characters and hence little memory
is used up.

The HIRES mode is the high-resolution graphics mode and this allows line

24

arawing and point plotting with a resoltution of 240 dots by 200.

There are a number of special commands which allow the user to make full use of
these modes and these are listed in Table 2.1

Table 2.1

TEXT LORES HIRES

INK INK INK

PAPER PAPER PAPER

PLOT PLOT CHAR

POS POS CIRCLE

SCRN SCRN CURMOV
CURSET
DRAW
FILL
PATTERN
POINT

TEXT and LORES use the same group of commands and so we shall look at these
first.

The INK and PAPER commands simply change the coiour of the foreground and
background colours respectively.

The PLOT command is used to position a character string using X and Y as the
coordinates of its starting point. Note that the left hand column is reserved for
background cotour information and thus the next column is called column 0. The
following example positions an asterisk in the tenth column of row 20 and lists
itself.

5CLS

10 LORES O " OR TEXT
20 PLOT 10,20,"*"

30 LisT

The POS command is rather strange. The syntax to make it work is A=POS(C).
Where C can actually be any valid alphanumeric character. This command simply
returns the horizontal position of the cursor regardiess of which row it is on. To
print the value directly use PRINT POS(C).

SCRN(X,Y) returns the ASCII code at co-ordinates X,Y on the screen. If when in
text mode no character exists at those co-ordinates the value returned is 32 this
being the ASCIl code for a space. In LORES no character is represented by 16,
other ASCIl codes remaining the same.

25

HIRES commands

The remaining graphics commands are restricted to HIRES mode. The CURSET
command positions an invisible cursor on the screen so that character printing can
begin at that point. Note that the top left hand corner of the printed character is put
at the cursor position. This command has 3 arguments: the first is the horizontal
coordinate to move to: the second is the vertical coordinate: the third is what to do
on arrival at the specified point. This last argument can be 0,1,2 or 3. O means
convert the point to the current background colour: 1 means convert it to the
current foreground colour: 2 means invert the colour of the point: 3 means do
nothing. Inversion in this context means if the point is in the background colour,
convert it to foreground and if in foreground convert it to background.

The CHAR command prints a character at the current cursor position. This
command also has 3 arguments. the first is the ASCIl code for the character to be
printed; the second is the character set to use and the third is the same as for
CURSET. The following short program demonstrates both these commands by
filling the screen with asterisks.

10 HIRES

20 FOR =0 TO 199 STEP 8
30 FOR J=0 TO 230 STEP 7
40 CURSET J.1,0

50 CHAR 42.0,1

60 NEXT J

70 NEXT |

The CURMOV command means move the cursor relative to its present position by
the amounts specified. Again this command has 3 arguments and the lastone is
the same as for CURSET. The first two arguments are the horizontal and vertical
displacements respectively. Thus CURMOV 7,0,2 means “move the cursor 7 dots
horizontally, O dots vertically and invert the point arrived at”.

DRAW also has 3 arguments, the third being as before. The other two determine
the relative position to which a line must be drawn, Try:-

10 CURSET 0.0.0
20 DRAW 230,190.2

This should draw a diagonal line across the screen. If DRAW -230,-190,2 is now
executed only some of the line is erased due to digitisation error.

The PATTERN command is linked to the DRAW command in that it controls the
type of line that is drawn. When the ORIC is switched on DRAW produces a solid
line because the pattern register is set to all ones. The PATTERN command is used
to change the contents of the register.

10 HIRES
20 CURSET 0.0.0

26

30 PATTERN $55
40 DRAW 230,199,2

This will draw a dotted line because the pattern registeris settc 01010101, Add
to the above:-

50 CURSET 115,100,0
60 CIRCLE 50,2

and as well as a dotted line there is acircle of radius 50 center 1 15,100 alsodrawn
dotted. A further modification is:-

10 HIRES

20 CURSET 0,0,0

40 DRAW 230,199,2

50 CURSET 115,100,0

60 FOR =50 TO 1 STEP -2
70 CIRCLE 1,2

80 NEXT |

this shows the errors due to digitisation very clearly as a cross.

FILL is a command for setting up fixed pattern areas on the screen. The full
command is FILL B,A,N where A is the number of character cells to be filled, B is
the number of rows to fill and N is the pattern to use. N must notexceed 127.The
command acts as from the current cursor position.

10 HIRES
20 FiLL 1,40,127

produces a solid white line across the top of the screen because 40 character cells
{full screen width) have all been filled. Changing the last argument will change the
pattern drawn across the screen in the same way as PATTERN works for the
DRAW command.

10 HIRES
20 FILL 5,10,$55

produces a band of vertical black and white lines, 5 rows deep by 10*6 dot
positions wide. The $55 sets up the pattern of 01010101 and the other
parameters determine the height and width.

The FILL command will always affect a rectangular area of the screen, but
sucessive uses of the command combined with CURMOV or CURSET can
produce other shapes provided they are made up of individual rectangles.

The POINT command has two arguments, and is used to test whether or not the
point at the co-ordinates X,Y is in the current background or foreground colour.
A=POINT(100,100) would give A=-1 if the point at 100,100 is lit and O if it is
not.

27

2.16 Sounds

The largest single components in the ORIC are the printed circuit boards and the
loudspeaker. Because the speaker is so large the sounds that the machine can
produce are very realistic.

The sound commands include four immediate commands PING, ZAP, SHOQT,
and EXPLODE and each produces the appropriate noise. The remaining three
commands can be used to generate either noise based sounds like ZAP or purely
musical sounds or a mixture of both.

The PLAY command determines the settings for both SOUND and MUSIC. lts
syntax is:

PLAY TE, NE, EM, EP

TE stands for TONE ENABLE and can have the following values.

O= no tone channels

1= channel 1

2= channel 2

3= channels 1 and 2

4= channel 3

5= channels 3 and 1

6= channels 3 and 2

7= channels 3,2 and 1

NE stands for NOISE ENABLE with values:-

O= no noise

1-7= noise on all channels

EM stands for ENVELOPE MODE and can have values O to 7 to select the
required envelope.

EP stands for ENVELOPE PERIOD

this is a number between 0 and 32767 which controls the period of the envelope
waveform. The larger this number is the longer the time between envelope
repeats.

The length of each note or chord or sound is determined by a separate WAIT
command. Sounds can only be stopped by the program executing another PLAY
command.

The MUSIC command gives pure tones only and has four arguments.

MUSIC CH, OC, N, V

CH stands for channe! number

OC stands for octave (O to 6)

N stands for note {1 to 12)

V stands for volume (O to 15)

Only if the volume parameter is set to zero will the current envelope be used.

The SOUND command can give noise or musical tones. It has three

28

arguments.

SOUND CH, PE, v

CH stands for channel {1 to 6). 1 to 3 for tones as before, 4 to 6 for tones
plus noise.

PE stands for period. This is the period of repetition of the sound and hence
is the inverse of the frequency.The larger this number the deeper the
sound.

V stands for volume and behaves exactly as it does in the MUSIC command.

2.17 The New Cassette System.

There are some sorely needed additions to the V1.0 commands now available. In
V1.0 all that could be done was to CSAVE “FILENAME"[S[where the, S is optional
selecting the slower baud rate, and to CLOAD "FILENAME"[,S]. Both commands
could be used with addresses to indicate that an area of memory was to be saved
or loaded. Thus CSAVE 'DATA"” A#B0QQ,E#B100,S would save the contents of
memory from #B0OOO to #B100 at the optional slow baud rate under the name
“DATA".1f “DATA" is then loaded it is put back into the address area from which it
was originally saved. Lastly V1.0 allows the specifier AUTO meaning that when
the program is loaded it is to be run on completion of a successful load.

In V1.1 there are the following extra specifiers to the CLOAD command.

V will verify that the program on the tape is the same as the one in memory. When
in use, the computer will display ~ Verifying..NAME B" on the status line. (The
status line is the text line in inverse video above the normal text screen).

Because of the way some tape recorders work, particularly those with automatic
volume control, the new loading routine may well detect an error in the load during
the synchronisation period and although the computer will state ERRORS FOUND
after the load is complete, the program will be found to be perfectly alright.
However AUTO-RUN programs will not run after loading if any errors (real or
apparent) are detected. To correct this, a short machine code program has been
produced which is listed in Appendix F. If this program is POKE'd in and then
saved as a header to an AUTO program it will disable the error routine which stops
programs auto-running.

CLOAD "NAME", J will append the program calied NAME to the end of the
program currently in memory. However, the two programs must not have
common line numbers. The program resident in memory must be numbered such
that its highest line number is lower than the lowest line number of the program
being appended.

Lastly there are two new commands which allow the contents of an array to be
saved and loaded. Firstly, STORE A,"NAME"{, S] where the, S is optional, would
save array A, which must have been previously dimensioned, under the filename
“"NAME". Secondly, RECALL A,"NAME"[, 8] will reload the array with its
variables.

29

When a file is being loaded the cassette system now displays a message as
“Loading...FILENAME B” on the status line of the display. The ‘B’ is the identifier
of a BASIC file. 'C’ is used to identify a machine code file, ‘R’ for a floating point data
array, ‘I’ for an integer array and 'S’ for a string array. The use of the identifier
restricts the length of a filename in V1.1 to 16 characters.

30

CHAPTER 3

Inside the Oric

We will now look at the way the ORIC is built and the various bits and pieces used
to make it and we will take a closer look at some of the facilities available to the
user. Beginners may find some of this chapter incomprehensible due to the
unavoidable technicalities involved. Do not despair, you do not need to understand
this chapter to use the ORIC's facilities.

Where appropriate we will use hexadecimal notation in this chapter, and all
numbers expressed in this form will be preceded by "#'. f you have never met this
number system before please refer to the section in chapter 4,

3.1 The Main Chips

The ORIC computer has been designed around three main chips. Firstly the 6502
central processing unit (CPU) which is the brains of the organisation. Next a
special purpose logical gate array which was designed specifically for this
computer. This chip is made by California Devices Incorporated in Silicon Valley.
Thirdly a 6522 versatile interface adapter that gives ORIC the ability to talk to the
outside world. The CPU chip used is common to a number of microcomputers and
may owe its popularity to Microsoft BASIC which was written for this chip some
years ago. A version of Microsoft is used in the ORIC.

3.2 The Resident BASIC and Operating System.

These two live in the main ROM at the top of memory. Since they are in the same
chip the separation between them is mainly philosophical. It is not possible to
remove just the BASIC and plug in another language, but it is possible to remove
both together, as we shall see later.

3.3 The 6502 Microprocessor

This is an eight bit machine which is widely used. At present it is still the market
leader of all microprocessors. It is fairly easy to program but does not have as wide
a range of instructions as some other microprocessors. Its address capability is
64K, (note that 'K’ here means binary thousands not decimal ones, hence

31

64K=21186); and no special provisions have been made for input or output. Thus
any device to which the microprocessor talks or listens must emulate an area of
memory. The standard crystal frequency is TMHZ and its cycle time is 1
microsecond.

3.4 The 6522 Versatile Interface Adapter.

This device is used to transfer information in and out of the ORIC. It drives the
sound generator (AY-3-8912) and the printer port, and is used as a time base and
as a keyboard interface.

It appears to the microprocessor as 16 sequential memory locations. These
locations are the registers of the 6522 and it is through these registers that the
6522 is controlled and that data is passed to the outside world and back.

The 6522 Versatile Interface Adapter is a complex chip and the reader is directed
to the data published by the manufacturers for full information. However the way
ORIC uses the printer port and Timer 1 is of interest here, On power up the 6522
registers are set up as shown below. (Note all numbers are in hexadecimal).

ORB BF:BE:BD:BC:BF:etc.
ORA

DDRB F7

DDRA FF

TiL-L 10

TiC-H 27

T1L-L 10

T1L-H 27

T2L-L -

T2C-H -

SR -

ACR 0:40

PCR FF:DD:FD:DD

IFR 40

IER 7F

ORA’ OE:7F.0E:BF:QOE:DF:etc

In fact the 6522 registers ORB and ORA' are continually updated in the intérrupt
routine.

Looking first at the Peripheral Control Register it is finally set to #DD. The data
sheet shows that this means the outputs CB2 and CA2 are both held low and that
the inputs CA1 and CB1 will each detect a low to high transition.

The Auxiliary Control Register is set to #40 which translates as continuous
interrupts from Timer 1, which was loaded with #10in T1-LOWand #27 inT1-
HIGH. Timer 1 will be decremented at the system clock rate and will generate an
interrupt on reaching zero. At this time the timer is automatically reloaded with the
contents of the latch registers and it starts to decrement again whether or not the

32

interrupt has been acknowledged. Thus a consistent timing is maintained
regardless of the load on the processor. As an item of passing interest the timer is
loaded with #2710 in hexadecimal notation. This is equal to 10,000 decimal. See
chapter 4 for conversion from hex to decimal. Since the system clock fora6502 is
nominally 1016 cycles per second this would result in an interrupt every 10mS.
During the interrupt routine the ORIC reads any keyboard character that is input
and stores it in a location in memory to be picked up later. {i.e after the interrupt
routine has ended).

There is a second timer in the 6522 which is available to the user. This timer
normally counts down at the system clock rate of 1MHZ and can cause an
interrupt when it reaches zero. Normally that interrupt is not enabled and the
counter runs on indefinitely. It can be stopped by POKEing 196 into location
#30B, reset to any desired value up to 65535 by writing to locations #308 and
#309, started by POKEing 64 into #30B and its current value read from locations
#308 and #309 where #308 is the less significant byte and #309 the more
significant. Since this timer can only hold a maximum figure of 65535 and thisis
decremented at a rate of 1016 counts per second it takes just 65mS to reach zero.
To expand the capabilities of this timer its interrupt must be enabled. This involves
intercepting the normal interrupt routine, testing if the interrupt is Timer 2, taking
appropriate action if it is and passing the interrupt back to the ORIC routine if it is
not. Timer 2 can only operate as a one-shot timer; in other words it must be reset
every time it causes an interrupt. If this does not happpen future interrupts are
automatically diasbled.

3.5 The Gate Array.

This chip was specially designed for the ORIC computer and is made by California
Devices Incorporated. There are two good reasons for using such a device in a
computer. Firstly it can replace a large number of standard integrated circuits and
thus bring down the cost of the final product if a sufficiently large number are
made. This chip replaces about 90 standard integrated circuits. Secondly, and
possibly more importantly in these days of piracy and rip-offs, the chip is only
available from C.D.l and only avaiiable to ORIC. This means that anyone wanting to
make and sell cheap copies has a very hard time ahead of him trying to figure out
what this chip does and how it does it.

This device handles all video generation and control as well as refreshing and
controlling the dynamic RAM, It also takes an interest in the memory map of the
ORIC, allowing the map to be changed under certain conditions. We will deal with
these changes later.

3.6 The Memory Map.

A memory map is simply a diagrammatical representation of the way in which the
designers of a computer have allocated the available address space. The map in
Figure 3.1 shows how ORIC’s memory space is split up into the various sections
needed by a computer.

33

HIRES TEXT & LORES
ROM ROM
CO00
SPARE #BFFO SPARE
SCREEN
SCREEN ALT CHARS
#A000 STD. CHARS
#9F00
ALT CHARS [—
#9C00 HIMEM
STD CHARS #9800
PROGRAM PROGRAM
SPACE SPACE
#500
PAGE 4 #400 PAGE 4
PAGE 3 #300 PAGE 3
PAGE 2 #200 PAGE 2
STACK #100 STACK
PA AGE O
GE O #00 PAGE

Figure 3.1 Memory Maps

34

Note that the whole of Page 3 in the memory map is given over to physical /0
addresses. The bottom 16 locations are in the 6522 already mentioned. The
remaining 240 are at present unused. It is the designer's intention to use the
lower section of Page 3 first leaving the upper section available for user’'s own
devices. Thus ORIC produced hardware will bolt on from the bottom of Page 3
upwards.

There are three other main items of interest in the memory map. These are the two
character sets and the screen area. ORIC stores both the standard and alternate
character sets in RAM and hence both can be changed by the user at any time.

3.7 Character Sets.

The standard and alternate sets are loaded into RAM at switch-on from the system
ROM. This may seem to be a waste of memory space since they must both be in
there twice. There is an advantage to this method which outweighs the small
disadvantage in terms of lost RAM. Both character sets are accessible to the user
and can therefore be modified to suit the user’s requirements.

VALUE 128 64 32 16 8 4 2 1 ADDRESS
8] o] V] 0 1 Y] 0 0 #B608
20 0 0 0 1 0 1 0 0 #B609
34 0 0 1 (o] 0 ¢ 1 0 #B60A
34 0 0 1 0 0 0 1 0 #B608B
62 0 0 1 1 1 1 1 0 #B60C
341 o 0 1 0 0 0 1 0 |#B60D
34 0 0 1 0 0 0 1 0 #B6OE
o] © 0 0 0 0 0 o] 0 | #B60OF
Figure 3.2

35

The characters sets are produced by setting the appropriate bits in a section of
memory. Figure 3.2 shows the memory locations for the character ‘A" and which
bits must be set to produce the character on the screen. It is obvious that there is a
one-to-one relationship between the bits that are set and the dots produced on the
screen. Zeros in the memory locations correspond to areas of the screen which are
the same size as dots but which are left blank. Figure 3.3 shows a section of the
screen and the locations in memory that control the characters printed there. To
demonstrate the ease with which the character set can be changed, try this
program:- (next page):

/ N\
/

//
/ #BEOA #BEOB #BEOC
/ #BE32 #BE33 #BE34
\ #BESA #BE5B #BESC i
\ #BEB2 #BEB3 #BEB4

#BEAA #BEAB #BEAC

#BED2 #BED3 #BED4

#BEFA #BEFB #BEFC
/ #BF22 #BF23 #BF24 \
(#BFAA #BF4B #BF4C \

#BF72 #BF73 #BF74 }

Figure 3.3

36

10 INPUT C
20 FOR I=0 TO 7
30 A(l)=PEEK(C+1)
40 NEXT |

50 FOR I=0 TO 7
60 POKE C+1,A(7-1)
70 NEXT I

80 END

Run the program then input the base address of a known character cell, say
46600 as this is the base for ‘A’. Now all ‘A’s printed will appear upside-down.

Any character can be inverted. Add some lines to the above program.

10 FOR C=46600 TO 47104 STEP 8

75 NEXTC

The program now takes a little time to run and as it does so the characters already
on the screen will be seen to invert until eventually the whole lot are upside-down.

VALUE 128 64 32 16 ADDRESS
3 0 0 #B608

18 0 1 #B609

18 0 1 #B60A

30 0 1 #B60B

30 0 1 #B60C

30 0 1 #B60D

63 1 1 #B60E

18 0 1 #B60OF

Figure 3.4 "Railway Engine”

37

Running the program a second time will put things back to normal. Even double
height characters are inverted by this technique because they are produced by the
same methods as single height.

To define special characters, the bit pattern needed has to be worked out. This is
most easily done using squared paper and treating each square as a dot. Figure
3.2 shows the capita! ‘A’ and the values this dot pattern represents.

Unfortunately V1.0 ignores commands of the form POKE A ,#NN where #
represents a hexadecimal number. This has been corrected in V1.1. In V1.0 it
meant that the values had to be entered in their decimal form, which is not as
convenient. Also notice that the character set is made up of characters cells 6 dots
wide by 8 dots high and that only 5 dots are used horizontally and 7 vertically. this
gives a one dot separation vertically and horizontally between characters.

Figure 3.4 shows a couple of special characters and the numbers needed to
produce them. These characters are inserted as ‘A’ and ‘B’ in the following
program and the resultant train is animated.

VALUE 128 64 32 18 8 4 2 7 ADDRESS

0 0 0) 0 0 0 |#B610
63 1 1 1 1 1 1 #B611
18 0 1 0 0 1 0 |#B612
18 0 1 0 0 1 0 |#B613
30 0 1 1 1 1 0 |#B614
30 0 1 1 1 1 0 |#B615
63 1 1 1 1 1 1 l#B616
18 0 1 0 0 1 0 |#B617

Figure 3.4 (contd) “Railway Carriage’

38

10 DATA 3,18,18,30,30,30,63,18
20 DATA 0.3,18,18,30,30,63.18
30 1=0

40 REPEAT

50 READ A

60 POKE {#B608+1},A

70 i=l+1

80 UNTIL =16

90 CLS

100 FOR J=30 TO 2 STEP -1
110 PLOT J4,"ABBB "~

120 NEXT J

130 GOTO 90

the train is jerky in its movements across the screen because it has to move one
character position at a time.

The alternate character set is only available in LORES 1 mode. To demonstrate it
change line 100 of the previous program to:-

50 LORES 1:LIST

and RUN the program again. What you are now looking at is a listing of the
program in graphics symbols instead of the usual alphabet. Given time you could
learn to read this, since it is only a form of substitution code, but why bother when
the computer can do it for you. Type CLS(RETURN) or use the hidden key to
recover.

The memory map shows that screen memory is always from #BFEQO down
whetherin TEXT or HIRES modes. ORIC saves enough space in memary to be abte
to switch between the two modes quickly. Note, however, the position of HIMEM
as shown in Figure 3.1. If you switch to HIRES mode after defining a string
variable, the string will be corrupted by the alternate character set. If you must
have strings and HIRES together, set HIMEM to #97FF to avoid this problem.
When running graphics programs in a 16K ORIC care must be taken to avoid
running out of memory.

3.8 Mapping The Screen.

The TEXT screen is shown in Figure 3.5 in terms of the memory locations it
represents. Thus the memory location #BBAS8 contains the ASCI! code for the
character at the top left hand corner of the usable area. This character is actually
the background colour attribute for that line. The next character on the line will be
the attribute for the foreground colour. Figure 3.6 shows the screen in HIRES
mode with the memory locations mapped as before. The bottom three lines of text
after the HIRES screen are not shown. The HIRES screen appears to be 320 dots
wide (#28*8=320) but in fact it is only 240 dots wide. This is because only six

39

N3380S 1X3l

§'€ einbiy

89419#

02oa#
84gag#
oqag#
svag#

SdVv2

AIvId

oggg#

40

bits of each location are used as dots, the top bits being used to either invert or lay
claim to the location being used as an attribute.

In HIRES mode no attributes are set on entry to the mode and hence all pictures are
drawn in white on black as a default. Attributes may be used as in TEXT and
LORES modes.

3.9 Screen and Colour Control.

The position of the cursor on the screen can be controlled from BASIC, or
Assembley language by using the appropriate ‘control codes’. These codes can be
accessed from the keyboard by holding down the CTRL key and pressing the
required character key simultaneously. Thus Tl will make the cursor move forward
one character space, called "horizontal tab’, but it will not delete any characters in
the way as just printing spaces would. Instead any character the cursor lands on is
inverted. The other facilities are TH for backspace, which behaves just as 11 does
except the cursor moves the other way, 1J which moves the cursor down one line
(line feed) and 1K which moves the cursor up one line. There are also 1L which
clears the screen and puts the cursor at the top left hand corner, 1M which acts as
RETURN does and TN which clears the row the cursor is on.

All these facilities are available to the programmer by using PRINT CHR$(N);
where N represents the numerical value of the character. To find the value of a
control character, the sequence starts with A=1, B=2, etc all the way to Z=26.

There are in fact 32 possible control codes in the ASCHi character set, so the
remaining codes are equivalent to non alphabetic characters. From the ASCII
character set in the ORIC manual these characters are seentobe (./.).1,.#,@. Thus
to clear the screen from within a program one can either use CLS or PRINT
CHR$(12);. To move the cursor down one line use PRINT CHR$(10);.For
horizontal tab use CHR$(9);. To move up one line use CHR${11});. To backspace
use CHR$(8);. Note that the horizontal tab (forward or backward) will ‘wrap
around’, that is if they attempt to move the cursor off the edge of the screen to left
or right, it will appear at the opposite edge one line up or down depending on the
direction of travel, and will then be able to continue moving.

This gives a method of subsituting for the TAB command which does not work in
V1.0. All that is needed is to use:-

10 FOR I=1 TO N
20 PRINT CHR$(9);
30 NEXT |

where N represents the number of character positions to be moved. This
sequence could actually be called as a subroutine using a variable T to make it easy
to remember. The program would now look like:-

NN T=3
NM GOSUB 1000

41

N3340S S3dIH

9'¢ ainbiy

4€J49#

8l4d

LTOV#

ooov

42

and at line 1000 there would be:-

1000 FOR I=1 TO T
1010 PRINT CHR$(9):
1020 NEXT |

1030 RETURN

A more ambitious, and much faster, solution is to use a machine code subroutine,
but this requires much deeper knowledge both of the ORIC and of the
microprocessor it uses. However Chapter 6 explains all about the machine code
side and Chapter 7 gives the system calls.

This method of ‘tabbing” can be expanded to cover any required cursor
movements, up, down, left or right and is cbvicusly very useful for formatting
information on the screen.

ORIC's colour facility in all modes is based on serial attributes. These work as
follows. All characters in screen memory can be considered as commands to the
screen controlier. If the contents of a screen location is a standard ASCH code the
controller prints that character on the screen at that position. {f however the
location contains an attribute the controller obeys the command represented by
that attribute. Thus the numbers O to 7 tell the controlier to set the foreground
colour to the appropriate hue. The numbers 16 to 23 have the same effect but on
the background colours. The numbers 8 to 15 affect the character set used and
whether or not the characters are to flash and/or be double height. The controller
always continues to obey the last attribute met.

Colour In TEXT Mode.

In the TEXT mode the memory locations corresponding to the very left hand
column of the screen are used to store background attributes. This column cannot
be used for anything else and will be referred to as column —1. Any attempt to use
this column for other purposes will fail because the ORIC expects to find
background attributes here and treats whatever it finds as if it were such an
attribute. The memory locations corresponding to the next column are used to
store foreground attributes.

The commands INK and PAPER change these foreground and background
attributes respectively. Any new attribute put on the screen by POKEing itin or by
using ESCAPE codes will only have effect up to the end of the line it is on because
at the start of the next line the embedded attributes will take over. This is a very
simple and cheap method of obtaining a multi-colour display. The only drawback is
that if it is necessary to have an attribute mid line, the attribute takes up one
character space. Provided the attribute can be used in place of the normal space
between words there is no problem.

The embedded attributes at the start of each line can be changed individuaily
either by POKEing new values into screen memory at the appropriate locations or
by using special control codes. These control codes are part of the ASCII set of
codes but are non-printable. That is, there are no characters corresponding to

43

these codes, their use is to tell the device controlled to take some action other than
printing a character. In this case the action is to place a serial attribute. The two
codes used are those represented by the numbers 28 and 27. 28 is the code for 1}

and 27 is the code generated by the ESCAPE key.

The serial attributes for the background colours in column~1 are the most difficult
to get at without using POKE. In V1.0 the following sequence has to be used:-

PRINT CHR$(28);CHR$(27); CHR$(18)

and this will change the background colour of the line the cursoris on togreen. The
explanation of this sequence is as follows:-

CHR3$(28) is a control code telling the ORIC "here comes a control code sequence
to change the background attribute of the current line'.

CHR${27) mrans the character immediately following me is a serial attribute, not
a character or other control code’.

CHR$(18]) is the attribute.

InV1.1 the control characters cannot be successfully used from inside a program
and they must be POKE"d in as if into memory locations. However they can be used
from the keyboard.

The serial attributes for foreground colours in the next column can be reached by
using the PLOT command. PLOT O,N,C will change the foreground colour of the
line N to the colour represented by the attribute C.

The other method of changing foreground attributes is by using ESCAPE again. I
the sequence PRINT “ “"CHR$(27),”"BTEXT"(RETURN) is typed in the word
‘TEXT will appear in green. This system only works if these characters are the first
to be printed on the line whose colour is to be changed.

The explanation of the PLOT method is:

‘0’ means ‘place in column QO this being the first column which the PLOT
command can reach; column —1 being used for background attributes.

‘N’ is the line number required.

‘C’ is the serial attribute to be plotted.

The PRINT sequence is not so easily understood. The space is only required in
V1.0 to move the cursor into the text area. InV 1.1 the cursor is already in this area.

The next character is ESCAPE and this tells the ORIC that what follows is a control
character. The ORIC therefore treats the ‘B’ as a control character, for whichithasa
special routine, and the result is put into the foreground attribute column. If the
space is omitted the output of the special control character routine would be put
into the background colour column without ORIC having been told that a
background attribute was coming. Thus the code for a foreground colour is put

44

into the slot for a background colour and the result is a black background. In V1.1
the situation is complicated by the cursor being in the text space already,

The PLOT command can be used to place foreground and background attributes
anywhere on the screen. Thus the background colour of a line can be changed
anywhere along its length, with the usual restriction that a printable character
cannot take up the same space as an attribute.

To produce the special effects such as double height,alternate character set and
flashing characters a second serial attribute has to be used. The attribute for
normal standard characters is the default setting in TEXT and LORES modes. if
this is changed to give flashing or double height it is usually reset when the
embedded attributes are met at the start of the next line. The exception to this is
double height. This is set by using D or by PRINT CHR$(4), and it must be reset
by CTRL-D again or by PRINT CHR$(4).

When stringing control sequences together to produce effects such as flashing
double height characters, care must be taken not to overwrite a previous control
code with the next one. The reason for this is that CHR$(27) or ESCAPE does not
increment the cursor. {This is a short hand way of saying that the next character to
be printed will go into the same location). Thus, if the sequence PRINT
CHR$(4)CHR$(27)"N"” were used it would produce a solid black line on the
screen. Neither CHR$(4) nor CHR$(27) increments the cursor and so, one is
printed over the other!Now use PRINT CHR$(4)" "CHR$(27)"NHELLO"and the
result should be a double height flashing black HELLO. It may not be if the
command resulted in the HELLO starting on an odd numbered line. If that is the
case, simply scroll up by one line by typing RETURN until the cursor tries to drop
off the bottom of the screen.

Add another control character to the above and make it PRINT CHR${4)
“ "CHR$({27)"N"CHR$(27)"AHELLO"and theresultwill be a flashing red double
height HELLO. Note that more spaces are not needed because there are
characters in the print sequence which already increment the cursor. Another
CHR$(4) will now have 1o be printed to prevent more double height characters
being printed.

There is a table of attributes in Appendix A showing the colours and special effects
available and the control codes required to produce them.

Colour In LORES Modes.

Both LORES modes put white characters on a black background as their default
settings. The screen locations corresponding to the very left hand column
{column—1) now contain the attribute for the character set to be used. In LORES O
mode this will be the number 8 and in LORES 1 it will be 9. Thus the character set
used can be altered by changing attributes. This change will only last up to the end
of the changed line because at the start of the next line the embedded attribute will
take over.

The remainder of the screen locations are filled with the number 16. This is the

45

attribute for a black background. Thus changing background colour by changing
one location will only affect the background colour for that location. Multicoloured
backgrounds are only achievable in TEXT or HIRES modes. However by using
background attributes multicolour block displays can be produced in LORES
modes.

The attributes in column-1 also have the effect of turning the foreground colour
back to white. Try this program:-

10 LORES 1

20 PLOT 0,0,8

30 PLOT 1,0,1

40 PLOT 2,0,”HELLO”
50 PLOT 7.0.9

60 PLOT 8,0,”"HELLO”
70 PLOT O0,1,"HELLO”
80 END

When RUN this gives a black background with a red "HELLO’ followed by some
red block characters on Ine 0. On line 1 there are the same set of block characters
as line O but in white and lower down the screen some more block characters
which actually represent 'Ready’ and on the start of the next line the flashing white
cursor. The program’s actions are as follows:

Line 10 puts the ORIC into LORES mode using the alternate character set.
Lines 20 and 30 place two serial attributes in line 0. These attributes are '8’ for
normal character set and "1’ for red foreground colour.

Line 40 puts "HELLQ' after these attributes.

Line 50 puts the attribute for alternate character set after 'HELLO' on line O
Line 60 puts 'HELLO' after the last attribute on line O

Line 70 puts "HELLO' on line 1

Thus the alternate character attribute on line O has changed the character setonly,
but the attribute at the start of line 1 has changed the foreground colour as well.

Apart from these differences the LORES mode is exactly the same as the TEXT
mode, even as far as producing double height flashing characters. However, note
that in LORES 1 mode the attribute 'O" must be used to produce double height
flashing alternate characters. See Appendix ‘A’

Colour In HIRES Mode.

In HIRES mode the system is exactly the same except that characters are now only
one dot high and PRINT and related commands cannot be used. Colour control
codes have now to be POKE'd into memory. Again a control code, or attribute, will
take up the space of a normal character. In HIRES each memory location is
considered to be divided up as shown in Figure 3.7. If bit 7 is set all following bits
are considered to be inverted. Consider the case with bit 7 always zero.

46

ATT DOTS OR
| | CODE ATTRIBUTE

SCREEN MEMORY LOCATION
IN HIRES MODE

Figure 3.7

If bit 6 is set the location is used to put dots on the screen. Setting the appropriate
bit will light that point. If bit 5 is set, but not bit 6, the location is still considered to
be used to plot points and the point represented by bit 5 is lit. {f neither bits 6 or 5
are setthen the location is used as an attribute and bits O to 4 contain the code. See
appendix A for the list of codes and colours.

Again if it is required to change colours mid screen no foreground information can
be plotted over the position occupied by the attribute code. The foreground
attributes that control flashing will still work in HIRES mode. Those for double
height and the alternate character set behave as those for the standard characters,
which is what might be expected for characters only one dot high.

3.10 Input and Output.

We will now took at the provisions made for using ORIC to control external devices
or for it to be controlied by them. In order for this to take place there have to be
ways of making ORIC talk to the outside world and of making it listen. Such ways
are called input and output or just 1/0 for short.

The Printer Port.

Let's look first at the printer connection and examine how this operates an external
printer. This output is taken from the internal 6522 chip already mentioned and
the connections used are listed in Table 3.1. Notice that the whole of Port A is used
for the data lines and that two extra lines are used for control. The method of
operation is as follows:-

47

Table 3.1

PRINTER PORT CONNECTIONS

PRINTER CONNECTOR 6522(PIN) 6522 (FUNCTION)
STROBE 1 14 PB4
DO 3 2 PAO
D1 5 3 PA1
D2 7 4 PA2
D3 9 5 PA3
D4 11 6 PA4
D5 13 7 PAS
D6 15 8 PAG
D7 17 9 PA7
ACK 19 40 CA1
GND 2-20 iNC.

When ORIC sends a character to the printer, it writes the required value to the port
A pins of the 6522, then sets the strobe line low for a short time and waits for the
Acknowledge line to detect a low to high transition. If no such transition is
detected after 15 seconds or so, ORIC decides the printer is dead and puts up a
message to that effect on the screen. Itis only during the time that the strobe line is
fow that the data on the printer port is valid. If a program uses an LPRINT
CHRS$({#XX) statement the printer port pins will take on the value XX while the
strobe tine is fow. A method of latching and acknowledging this data is shown in
Chapter 5.

The Expansion Connector.

This connector gives access to most of the 6502's bus and control lines. The
missing lines are, for those who are interested,"SYNC, RDY, and NMI. There are
some special purpose lines to aid interfacing to the ORIC and these are called
MAP, 1/0 CONTROL and ROM-DISABLE.

1/0 Line.
The 170 line is pulled low whenever a Page 3 address is decoded internally. This
saves a lot of address decoding for the user because only 8 address lines need to

be decoded to arrive at a unigue location within a Page. Some methods for doing
this are shown in Chapter 5.

170 CONTROL.
1/0 CONTROL aliows the user to mask the internal 6522 out of the address space.

This is done by pulling this line low. Thus connecting 1/0 to |/0 CONTROL gives
the user access to the whole of Page 3.

48

ROM-DISABLE.

The ROM-DISABLE line is used to disable the internal Read Only Memory. Pulling
this line low allows external memory to take control. Since there is now no
operating system the external program must be completely self supporting in
whatever it does. This line gives ORIC the ability to call external routines by making
an external access through Page 3. An external circuit recognises the address and
pulls ROM-DISABLE low thus enabling its own program to be paged in. The
advantage of this technique is that extra program memory can be addad without
taking up RAM space.

MAP.

The MAP control is more complex since its operation is dependant on the current
address. If MAP is pulled low when ORIC is accessing the top 16K of memory
(normally ROM) the internal ROM is disabled and the internal RAM is enabled. If
MAP is pulled low when the rest of memory is being accessed the internal RAM is
disabled and external memory or any external device may take over. Thus external
hardware can be mapped in anywhere in the RAM memory space. The MAP line
could be controlled via Page 3 and hence allow ORIC to page hardware in and out
of its memory map. The MAP line must be synchronised with Q2 and must go low
at least 80nS before Q2 goes high and it must stay low for at least 250nS. See
chapter 5 for circuit diagrams.

3.11 Sound.

The MUSIC, PLAY and SOUND commands were described in rather bald terms in
Chapter 2. Now is the time to put some hair on these descriptions, so to speak.
ORIC's sounds are generated by a special chip which can produce three distinct
notes all at once. Thus this chip looks like three sound generators all in the same
package. Each generator is controlled by a ‘channel’ in the sound chip. The word
‘channel’ is used because this section ‘channels’ commands to the appropriate
sound generator in the chip. The sound generator to be used is selected by a
channel number in a command.

Using the sound generator from BASIC is reasonably simple. The main points to
watch are that once a sound has been started it can only be stopped by issuing a
PLAY 0,0,0,0 command and that to use one of the available envelopes the volume
section of the SOUND or MUSIC command must be set to O and the required
envelope selected in the last two sections of the PLAY command.

We had better start by defining the term ‘envelope’ and then describe the
differences between the seven envelopes available. The envelope of asound is the
variation of the volume of that sound with time. Thus a sound that starts off softly
and builds up would have an envelope as shown in Figure 3.8. Add a sharp cut off
and this is the same as the ORIC's envelope mode 2. The manual gives a pictorial
representation of all the envelopes. Envelope 1 is the reverse of 2 in that the sound
starts at a high volume and decays away. This type of envelope is said to have a
strong "attack’, meaning that the initial increase in volume is very steep.

49

VOLUME

TIME

RAMP ENVELOPE

Figure 3.8

Both envelopes 1 and 2 are of finite length. That is to say that after their period has
expired the envelopes are not re-started.

Envelope 3 is a repetitive sawtooth giving a sharp attack followed by a steady
decay. The period of this envelope is the time between successive peaks of the
envelope.

Envelope 4 is a steady rise followed by a steady decay. This could be used to
simulate the "beat’ produced by two notes which are very close to each other.

Envelope b is a slow rise followed by a steady level. This envelope does not repeat
and the period refers to the time taken to complete the rise.

Envelope 6 is the reverse of 3 giving a sudden rise (or attack) followed by a steady
decay. The period is as for 3.

Envelope 7 is a linear rise followed by a steady level. Apart from the way the initial
rise in volume is arranged this envelope behaves as 5 does.

The production of pure tones in each of three channels is the simplest starting

point for practical demonstration. The program below bringsinthe 3 channels one
after another and then turns them all off at once.

50

10 MUSIC 1.4,4.4
20 MUSIC 2,4,7.4
30 MUSIC 3.4,11,4
40 PLAY 1,0,0,0
50 WAIT 100

60 PLAY 3,0,0,0
70 WAIT 100

80 PLAY 7,0,0,0
90 WAIT 100

100 PLAY 0,0,0,0

Lines 10 to 30 inclusive define the note and volume settings for each of the 3
channels. Lines 40, 60 and 80 turn on the channels in order and lines 50, 70 and
90 control the time for which each chord is played. Finally line 100 stops the
sound generation. Notice the peculiar numbering system used in the PLAY
command to bring in the different channels. Line 40 brings in channel 1, line 60
brings in channels 1 and 2 and line 80 brings in all 3 channels. The reason the
numbering system looks strange is because the computer is using the lower 3 bits
in the number to control a channels selected. Thus bit O controls channel 1, bit 1
controls channel 2 and bit 2 controls channel 3. If all this still sounds like gibberish
to you, read the section in Chapter 4 on number systems and, hopefully, all will be
made plain.

This program can be modified to demonstrate the use of envelope commands.

Each PLAY command can change the envelope in use to produce special effects.
Try this version of the same program:-

10 MUSIC 1,4,4,0
20 MUSIC 2,4,7,0
30 MUSIC 3,4,11,0
40 PLAY 1,0,4,100
50 WAIT 100

60 PLAY 3,0,6,200
70 WAIT 100

80 PLAT 7,0,7,900
90 WAIT 150

100 PLAY 0,0,0,0

The MUSIC commands in lines 10 to 30 now have their volume arguments set to
0. If this is not done the envelope sections of the PLAY commands will have no
effect. Line 40 uses envelope 4 with a period of 100. This last argument is scaled
in milliseconds. Thus the period of 100 gives a repetition of the envelope every
tenth of a second. Line 80 selects envelope 6 with a period of 200, thus repeating
every fifth of a second, and line 80 selects envelope 7 with a period of 900 giving a
repetition of 0.9 seconds. Envelope 7 does not repeat and the period now refers to
the time taken for the active part of the envelope to complete. The active part being
in this case the part between minimum and maximum volume.

51

The SOUND command is capable of producing pure tones, like the MUSIC
command, or noise or a mixture of both. Looking first at its use in producing pure
tones, the following program gives very similar results to the original one using the
MUSIC command.

10 SOUND 1,100,6
20 SOUND 2,120,5
30 SOUND 3,85.6
40 PLAY 1,0,0.0
50 WAIT 100

60 PLAY 3,0,0,0,
70 WAIT 100

80 PLAY 7,0,0,0
90 WAIT 100

10 PLAY 0,0,0,0

The first major difference is that the note actually played is determined by a
number which is not related to a musical scale. This number is the period of the
note. The following table and graphs {see Figure 3.9) are based the author’s
measurements.

Number Period Frequency
50 .8BmS 1250 HZ
100 1.6mS 640.HZ
150 2.4mS 412.HZ
200 3.2mS 312.5HZ
250 4.0mS 250.0HZ

This shows a linear relationship between the number used in the SOUND
command and the period of the note produced, as might be expected.

When noise is to be added to the sounds produced set the noise enable bit in the
PLAY command and use one of the noise channels in the SOUND comand. The
noise produced will take the frequency of the SOUND command as its base. To
produce the best results from the noise facility it is necessary to make use of the
envelope section of the PLAY command. Try these two short programs to hear the
different effects:-

10 SOUND 4,150,0

20 PLAY 1,1,2,2000

30 WAIT 200

40 PLAY 0.0,0,0

and now change line 20 to:-

20 PLAY 1,1,1,2000

52

As an aside, try this program:-

10 SOUND 4,240
20 PLAY 1,0,1,1000
30 WAIT 200

40 PLAY 0,0,0,0

You should hear a sound which is fairly close to that produced by the PING
command, but it is at a lower volume and does not have the same reverberation
time. Obviously not all the sound generator's facilities are available to the BASIC
programmer.

To make sound effects on their own, set the Tone Enable bitin the PLAY command
to zero. This next segment makes an impact type noise.

10 SOUND 4,300,0

20 PLAY 0,1,1,1000

30 WAIT 200

40 PLAY 0,0.0,0

Changing the middle parameter of the SOUND command in line 10 changes the
base frequency of the noise produced. Using 600 instead of 300 gives a sound
much more like SHOOT except that again the volume is lower and the attack is
less. Numbers above 700 start to produce high frequency sounds again.

Notice that if the Noise Enable bit of the PLAY command is set then you will always
hear noise in the output. That noise may not be what you expected to hear if you
have not used a channel number greater than 3 in a previous SOUND command. if
a noise has been defined by correct use of a SOUND command, it will stay defined
until changed by another SOUND command using the same channel number. if
the following program is entered:-

10 SOUND 4,600,0
20 PLAY 0,1,1,1000
30 WAIT 100

40 PLAY 0,0,0,0

and RUN, and then line 10 is changed to MUSIC 1,4,4,0 and the program RUN

again, no difference is discerned. However, press the hidden Reset button and
RUN the new program again. Now you will hear the difference.

53

Frequency Graphs of Frequency & Period against

{(+) Number in Sound Command
1200 -
Y—— = Frequency
(&——) = Period
Period A
(0
4
3
2
1
“Number” —
14 L] O
Y T T Y Y
0] 50 100 150 200 250 Number

54

CHAPTER 4

How Computers Think.

This chapter is a general one on how computers work. It is hoped that after
reading, and understanding, this chapter you will have all the necessary
Knowledge of computer hardware and behaviour to be able to tackle the more
advanced topics dealt with in Chapter 6.

The first sections of this chapter are given over to number systems because there
is a need to understand them if you intend understanding the internal workings of
computers.

We shall then look at how a computer executes a program in some detail and
finally describe the way a high level language like BASIC works and compare it to
other possible methods of implementing a computer language.

4.1 The Binary System.

The word Binary means ‘based on 2, and the arithmetic associated with this
system can therefore only concern itself with devices that have two possible
values. The convention is to use the values of O and 1 to represent the two
possibilities. In contrast to this, decimal arithmetic is based on 10 and the devices
in this system can have any one of 10 possible values (0-9), O being the firstand 9
being the tenth. A single digit in the decimal system can therefore have any value
between O and 9 and in binary arithmetic a single digit can have the values O or 1
only.

Toacomputer, binary arithmeticis the easier system. The computer’s memory can
be thought of as being made up of a large number of switches which are either on
or off. If a switchis on, then that represents a 1, ifitis off it represents a 0. To work
in decimal arithmetic, each switch would have to have 10 possible positions and
this makes for very cumbersome switches.

In order to be able to deal with numbers larger than 1 the computer strings
together groups of switches. Traditional groupings are 4, 8, 16 and 32 allowing
the machine to handle numbers upto 15,255, 65535,and 42706225 inone go.
The ORIC uses a grouping of 8 switches, so we shall concentrate on this
arrangement. From now on we shall use the more usual name for these switches
and cali them BITS. Tradition has it that the word BIT is a contraction of Binary Digit
butitis equally likely that the word came first, as being a bit of information, and the
explanation came later.

556

Binary arithmatic uses position to determine the value of adigitin exactly the same
way that decimal arithmetic does. The very right hand digit is the least significant,
or smallest, and the very left hand digit is the most significant, or largest. To give an
example, consider the decimal number 123. The 3 at the right hand end means 3
units, the 2 in the middle means 2 tens and the 1 at the left hand end means 1
hundred. The digits used are multipliers, then, for the value of the position they
occupy. The position values are arrived at by using a power series of the numerical
base of the system, In the decimal system the base is 10 and so the power series is
1010, 1011, 1012, and so on. Hence we obtain the positionvalues 1, 10, 100 etc.

In the binary system the base is 2 and so the power series is 210, 211,212,213,
and so on giving position values of 1, 2, 4, 8, 16 etc. Thus, the binary number 10is
actually O units and one 2 giving 2. In decimal, this same number represents O
units and 1 ten.

Any binary number can be evaluated by writing down the position values above
the digits and then adding up those values which have a 1 beneath them and
ignoring those with a 0. For example, consider the binary number 10101010.
This actually represents the number 170 in decimal notation. To demonstrate that
this is so let us use the method described.

128 64 32 16 8 4 2 1
1t o0 1 0 1 0 1 O

We add up the position values which are above a 1 and obtain 128+32+8+2=1 70.

The computer stores its numbers using the same convention of least significant
on the right and most significant on the left. This is only a convention and it would
be possible to do things the other way round.

There is one other convention which ought to be mentioned at this point. It is
customary in the decimal system to start writing down a number with the first non
zero digit. Thus although we may have to add 29 to 123 we only write 29 not 029.
This is called ‘leading zero suppression’. When dealing with binary arithmetic
where the system in use has a fixed number of bits (as is the case with an eight bit
machine such as the ORIC} it is customary to write down the values for all eight bit
positions even if they are zero. Because binary notation is being used a letter ‘B’ is
written down after the number to indicate this. Thus the number we first used
would be written down as 10101010B.

Binary Arithmetic.

Now that we know what a binary number is and how to convert it into decimal, we
can look at how binary numbers are added and subtracted. Muitiplication is also
possible using multiple additions, but apart from that we shall make no mention of
other arithmetic functions here, these being beyond the scope of this book.

When you were taught arithmetic at school you may dimly remember chanting

such things as ‘one three is three, two threes are six, three threes are nine...." and
so on. This sort of teaching is now unpopular with teachers, or so the story goes,

56

which is a pity because this is in fact the only way that we can learn how to do
arithmetic with any speed. Even addition in the decimal system has to be learnt off
by heart. If you are asked to add 9 to 4 you will answer 13 not because you have
‘worked it out’ but because you have learnt and remembered the relationship
between these three numbers in just the same way as you learnt your tables. You
can, of course, work out the sum 9+4 from first principles but it would take too
long to do and is extremely difficult to do in your head. To demonstrate this, howdo
you prove that 9+4 is 13 and not some other number?

This leads on to another advantage of the binary system as far as computers are
concerned. Instead of having to remember a large number of possible additions,
only three are needed. The first is 0+0=0 which may seem rather trivial but must
be defined for the computer, or it will not know what to do. The second is 1+0=1,
and the third is 1+1=10. If this last looks like heresy, remember that it is really a
binary sum expressing the same result as the decimal sum 1+1=2.

Let us now look at eight bit addition, using what we already know.

10101010 170
01010101 + 85 +
11111111 255

The numbers 10101010and 01010101 are said toc be complementary because
where one of them has a 1, the other has a 0. Adding a number to its complément
will always produce 11111111B. In case that was too easy, try this one:

10101010 170
00001000 + 8 +
10110010 178

in this sum, the two 1's in the fourth column from the right add together to give O
in column 4 and 1 to carry into the next column. There was only a 0 to be added to
there and so no more carries were generated. Now try this one:

10101010 170
10000000 + 128 +
1 00101010 298

Here the only carry generated was from the left-most column (value 128) and

57

there are no more columns left to hold it. To human arithmeticians this sort of thing
is no problem. We merely create an extra column, value 256, to hold the extra bit.
A machine cannot do the same trick and has to have provision built into it to handle
all such contingencies. The way the 6502 handles this is to store the extra bitin a
separate memory location which is part of the Status Register. The programmer
can then test the Status Register after each addition to see if such a carry bit was
generated and he/she can take whatever action he/she deems appropriate. For
more information on the Status Register, see Chapter 6. Here is a more tricky sum:

10101010 170
01110110 + 118 +
1 00100000 288

111111

This sum has an interesting situation in the 32’s column. Here we have 1+1 plus a
carried 1 from the previous column. Thisresultsina 1 and 1 to carry; the restof the
sum is as before. Again a carry bit is generated into the 256 column and would be
stored in the Status Register as before. As an aid to understanding, the carry bits
have all been printed under the columns into which they carry to show the
mechanics of the sum.

So much for binary addition. With a little practice it is possible to become as
proficient in this as in the decimal variety. We shall now turn our attention to
subtraction, which should hold no terrors for us since we know how to do this in
the decimal system and the same principles are used. We have already seen the
sum 1+1=10 as the first step in addition. We can turn this round to demonstrate
the first step in subtraction; 10-1=1. We can explain this in exactly the same
terms as used in the decimal system.

10
1 -
01

ety

The reasoning goes as follows:- Subtract 1 from 0. Cannot do this because O is
smallerthan 1, therefore borrow 1 from next column, making itzero. Now subtract
1 from 10 to give 1 and the subtraction is complete because we have run out of
digits to subtract. Notice that to do this subtraction we had to know that 10~1=1,
so that in fact the demonstration had to be known in order for it to be done. This
may look like a fiddle, but it is just the same as describing how to subtract 9 from
13 to get 4 because again the answer has to be known. This next sum is just as
obvious:

10101010 170
00001000 - 8~
10100010 162

58

In this simple subtraction we have merely removed 1o | ahish orctipied the 8°'s
column. Let's try another:

00001000 5
00000100 - 1 -
00000100 4

The example demonstrates that 10-1=1 in whichever column the subtraction is
being performed.

Inthe decimal system, if a larger number is subtracted fromasmaller theresultis a
negative number. This is indicated by the prefix =", In a computer there is nowhere
to store such a prefix and so a different method of indicating a negative number
has to be used if they are to be allowed. Also the system has to be flexible enough
to let the programmer decide whether or not he wants to use negative numbers.
The method chosen is to use the most significant digit as a signindicator. If thisis a
1, the number can be thought of as negative and if this hit is a O the number is
positive. This means that 8 bits can represent numbers from +127 to -128.
However, the system must allow a number to be positive or negative and yet stili
give the correct answer when it is added to another number. Let us look at this
problem in a little more detail.

We have already used the number 10101010 and said that it was equal to
decimal 170. But, this number has its top bit setto 1 and so could be considered to
be a negative number. Suppose then that we said that this number was -42, this
being the sum of the remaining values which have a 1 in their positions. Look again
at the first addition which we did:-

10101010 170
01010101 + 85 +
11111111 255

and try it as the addition of a positive and a negative number.

10101010 -42
01010101 + 85 +
11111111 -43

e ———— ————

But11111111Bwould represent—127 using our system and hence this leads to
anincorrect answer. Qur cystem does not work, so we throw it out and try another.

59

We will stick to using the top bit as indicating that the number is negative. Let us
expand on that and say thatif that bitis set, itrepresents—128 and that all the other
values will be: positive and thus reduce the value of the negative number. By this
method 10101010 would represent -128 + 42=-86. Now try our sum again.

10101010 -86
01010101 + 85 +

IRRRRRER -1

And the sum is now —128+64+32+8+4+2+1=-1 so this system works. It also
leads to the unlikely resultof 11111111B being -1 but worse things happen at
sea.

The fact that the sum of a number and its complement is -1, gives us another
method of doing subtraction. It is a simple task to produce the complement of a
number, so |2t us denote the complement with a bar over the top of the number
like this:

[

where ¢ represents a binary number. We now have ¢+& =—1. Suppose we now
want to subtract one number from another. In other words we want to solve the
equation a~c=x where, as usual, xis the unknown. From c+& =-1 we have—c=C +1
and substituting in the equation for ¢ gives a+¢ +1=x. So we can find x without
doing any subtraction at all. We need to complement c, add it to a, add 1 to the
result and that will give the answer.

The binary system just described can be used for ‘'multiple precision’ arithmetic
just as easily as for single precision. This means that a number can be stored in
more than one byte, allowing the programmer to use 8, 16, 24 or even 32 bit
arithmetic. In each case the top bit can still be used as a sign bit.

This leaves only one possible source of confusion. What happens if a large
{comparatively large, that is) number has another number added to it, both
numbers being positive, and the sum is such that it sets the top bit. If signed
arithmetic is being used then the answer would look like a negative number which
is clearly nonsense. To allow the programmer to test for this the 6502 has an
overflow flag in the Status Register. If the top bit of the accumulator is set by an
addition, then the overflow flag in the Status Register will be set to 1, indicating
that although the number looks negative it is in fact positive. Programmers can
test for this condition after each addition and take such corrective action as they
deem necessary.

The B.C.D. System.

B.C.D. stands for Binary Coded Decimal and it is a system which combines both
binary and decimal systems. The binary notation is used but numbers up to 9 only

60

are allowable. To represent the number 9 only 4 binary digits are needed, 1001
being the bit pattern. Thus two BCD digits can be packed into a Byte. This system
is attractive to accountants because it allows the setting up of sums using a fixed
number of significant digits in the computer and keeps track of each digit
individually. In binary arithmetic the actual layout of the answer in decimal notation
is not clear until all the computations have been completed and the answer is
presented. With BCD each digit can be followed through all stages.

The BCD system uses the computer’s memory in blocks of 4 bits, or Nibbles, one
Nibble per digit. Thus the number 9 as we have already seen is 10018B; the
number 10 in decimal would be C001 O0008B. This may seem a rather surprising
result, but remember in BCD 9 is the maximum digit per nibble, so any number
greater than 9 has to use two or more BCD digits. Thus 99 would be 1001 10018
and 100 would be 0001 0000 0000B.

We can now see that BCD is written down exactly as decimal numbers are except
that each decimal digit is coded into its binary equivalent-- hence the name.

BCD Arithmetic.
This system is really just the same as decimal arithmetic except that the digits

used are expressed in four bit binary code. For example the sum 9+6=15 would
be

1001 9
0110 6 +

0001 0101 15

Had this sum been in binary the result would have been 111 because 6 is the
binary complement of 9. To achieve the desired result in BCD we would then have
to add 6 to that result, as shown below:-

111 15
0110 + 6 +
0001 0101 21

By using this technique, we can simulate BCD addition by testing for a result being
greater than 9 and if it is, adding 6 to it to adjust the result. Some microprocessors
have a special instruction called Decimal Adjust which does just that. When using
BCD with these processors the procedure is to do the arithmetic as normal and
then Decimal Adjust the result to produce BCD.

The 6502 processor has the ability to do BCD arithmetic directly. In the Status
Register there is a Decimal flag which can be set or cleared by the programmer. If

61

this flag is set the processor interprets all arithmetic operations as being BCD type.
When the flag is cleared the processor will perform normal binary arithmetic. The
manufacturers of the 6502 do not guarantee the state of any of the Status
Register flags except the interrupt flag at power on or Reset and consequently itis
good programming practice to set or clear the decimal flag as required before
doing any arithmetic.

The Hexadecimal System.

This is the last number system we shall look at and we will only go as far as to
describe how this system is used to represent binary numbers. It is possible to
perform hexadecimal arithmetic but the effort involved is usually too great in
comparison to the gains made. It is far quicker, and undoubtedly more accurate, to
use the computer to perform any operations that are needed in this system.

The reason this system exists is to be able to represent all 16 possible states of a
Nibble by a single character. To achieve this, the first 9 states are represented by
the decimal numbers they are equivalent to and the states 10-15 are represented
by the letters A to F to give a truly alpha-numeric system. The table below shows
the way the systems compare.

Binary decimal hexadecimal
0000 (6] 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 10 A
1011 11 B
1100 12 C
1101 13 D
1110 14 E
1111 15 F

This system can obviously be used to describe the contents of a Byte by using two
hexadecimal digits. Thus the number we started with in the binary system,
101010108 would be AA in the hexadecimal one.

Before leaving number systems and going on to other fields it is worth pointing out
that now we have so many different ways of representing the same number it is
imperative to state which system is in use. This is usually done by the use of
prefixes or suffixes attached to the number itself. Thus a binary number would

62

usually end with a capital ‘B’ as 101010108. Where ail eight bits are used this
may seem superfluous, but it is still a good habit partly because it keeps you in the
way of stating the system used and also because meeting a number like 100 onits
own could be very confusing. Decimal numbers are sometimes priviledged in that
they alone have no suffix or prefix. Hexadecimal numbers are sometimes
represented as OAAH, for example, the leading O being required by some
machines to tell it that a number is following and the H at the end tells it the system.
A more common method is to prefix the number with either $ or #. The ORIC
computer uses the # sign (called HASH) and so that is the method we shall use
from now on. Our original number would therefore be written as #AA.

4.2 How Computers Are Made.

A program is a set of stored instructions. A computer is a device that is capable of
executing those instructions. In order to be able to do this the computer must
firstly be able to store the instructions, and so it must have a memory. Secondly it
must be able to execute those instructions so it must have a means of decoding
them and acting on them. The part of the computer thatlooks after these functions
is called a Central Processing Unit or CPU. Lastly it must have a way of
communicating the result, since an answer which is known only to the computer is
all very well, but it does not provide any satisfaction to anyone. Therefore a
computer must have Input and Output devices, usually lumped together under the
term [/0.

This then describes our general purpose computer and a model is shown in Figure
4.1,

There are some extra parts of the model which we have not yet mentioned and
these are all to do with the internal operation of the machine. For the computer to
execute an instruction in the stored program it has to transfer that instruction into
the CPU. This is done by the Data Bus. The memory has 1o be told which
instruction is wanted and this is done by the Address Bus. Lastly, the memory has
to be toid whether the CPU is reading information, such as an instruction,from itor
writing information, such as the result of a calculation, to it. This job is done by the
Control Bus.

We now have a general picture of a computer with the data in the memory being
read and written by the CPU with the various buses keeping all the parts serviced
with the information required. These buses are actually just collections of wires, as
many wires being used as there are bits of information to transfer. Thus the
Address Bus has 16 wires because, in our machine, there are 65536 possible
memory locations and, to give each one a unique address, requires that many bits.
The Data Bus has only 8 wires because the data is moved around in Bytes. The
control bus in this machine has only 2 wires because the 6502 only needs a timing
wire to keep all peripherals in step and a Read or Write wire (R/W') to tell the
memory whether the CPU wishes to read data or to write it. Other control wires are
available on the 6502 but only these two are essential.

63

L'y 8inbiy

Dooooan
0a0gooo
anooaoo

JiHO

SNg 1044NOD

WWH

L

]

0/

WOy

ndo

S$N8 sS3¥aav

sng viva

64

The 1/0 section depends on the application of the computer. General purpose
machines, such as the ORIC, have a keyboard and an interface to a T.V. set or a
monitor so that the user can enter information and receive answers on a screen.
There may also be a printer for hard copy of some or all results and there may be
disc drives or a cassette recorder for storage of the user’'s programs. Lastly there
may be some specialist interfacing hardware to allow the computer to control
some external device such as an oven or a small electric motor. Special purpose
computers would only have the interfacing hardware required for their own
special purposes and they would be programmed only to perform a fixed set of
tasks. Such special purpose machinew might be washing machine controllers,
engine controliers for up-market motor cars and lorries, ticket vending machines,
arcade games and so on. The list of applications is practically endless because
computers can control anything which can be controlled and usually do it better
than anything else can.

4.3 Program Storage And Execution.

If we had a device which allowed us to examine the memory of a computer, we
would see something like the picture given here.

Address Data
#C000 #4C 59 EA 4C 75 C4 40 C9
#C008 #A4 C6 E3 CF E3 CF 8B CC

The data is presented in blocks of 8 Bytes. All the numbers used are hexadecimal.
This appears to be a rather meaningless load of miscellaneous numbers, and tous
that is what it is. But, to the 6502 processor this is a meaningful program and is
the only sort which it can understand. This is what is known as ‘'machine code’ and
it is the lowest level, in terms of programming, to which we can sink. The BASIC
language, which ORIC is programmed to understand. looks nothing like this and
the 6502 cannot obey BASIC commands directly. It must have a program, writen
in machine code, which it follows and which interprets the actions required by
BASIC.

Writing programs in machine code, while possible, is not recommmended. It is too
fiddly, too prone to error and far too tedious for one’s sanity. The preferred method
is to write in a language called Assembly Language and then use a special
program, called an Assembler, to convert that into machine code. This is
equivalent to writing in machine code except that we now use a set of ‘words’ to
describe what the machine is to do and the Assembler translates these into
machine code for us. There is a one to one ratio between Assembly Language and
machine code, the use of the former merely makes life easier for the programmer.

The segment of machine code which we looked at is stored in the computer’s Read
Only Memory (ROM) which means that this program cannot be altered and is
there immediately we switch on, so that the machine has something to do straight
away. If such a memory did not exist, the computer would have no program to
execute when switched on and would sit there - figuratively speaking - for a very

65

long time! From this you may have deduced that a computer must always have a
program to execute and that it is executing a program all of the time. Obviously,
because we humans are so slow at deing things compared to the speed of the
computer, it spends most of its time looking to see if we have done something and
if not, looking again.

The program which the computer designers have provided with the machine is
really in two parts. The first part is called the ‘operating system’, and this is
concerned with such things as input, output and system timing. The second part,
which makes use of the first part, is the BASIC language itself which is concerned
with interpreting the commands which form the BASIC program typed into the
machine by the user. In some machines it is possible to remove the BASIC
language, leaving the operating system in place, and plug in another language
entirely. The ORIC computer treats the two parts as one entity in this sort of
operation, and they are either both in or both out.

Because the computer is executing a program all the time, it is worth mentioning
exactly what it is doing. Let us imagine that the machine has just finished one
instruction as we join the action. The sequence of events would be:-

1. Fetch the next instruction.

2. Add 1 te the instruction pointer so that it is already pointing to the next
instruction.

3. Execute the current instruction.
4. Go back to 1,

Such is a day in the life of a computer!

4.4 How BASIC Works.

As you will have realised by now, the ORIC computer has been programmed by its
designers to understand the BASIC language as described in Chapter 2, and this
program is permanently in the machine. The programs that are subsequently
written by a user are stored in Random Access Memory (RAM} and these
memories forget what they hold when the power is switched off. Hence the
machine has to be loaded with your program every time you switch on.

BASIC is known as an ‘interpretive’ language as compared to a ‘compiled’ one.
Since the ORIC uses BASIC we will describe how an interpreter works first and
then look at compiler systems.

The program provided by the system designers can be thought of as a large
dictionary. When the computer executes a BASIC command it does so by looking
up that command in its dictionary and executing the machine code program it
finds under that heading. Thus, the complete definition of the language is resident
in the machine all of the time. The part of the program which controls the editing
functions available to the user are really part of the BASIC language.

66

When a program is entered into the machine, either from the keyboard or from
some other device such as a cassette recorder, it is not stored in the format which
we see when we list the program. All the BASIC commands are converted into
‘tokens’ in order to save space and to increase operating speed. (A token is a
number greater than 128). Also, when a program is saved to cassette or disc, it is
the tokenised version that is saved, again to save space and to improve speed. To
fully explain this peculiar method, consider these two lines of program:-

20 FOR i=0 TO 60
#16 #05 #04 #00 #8D #20 #49 #D4 #30 #C3 #20 #36 #30 #00

The upper line is a standard BASIC line of code, easily understood by all. The lower
line is how that line of code is stored in the computer, and the meaning of these
hexadecimal numbers is as follows:-

#16 #05 is the start address of the next line in reverse order. Thus this means
that the next line starts at address #5186.

#14 #00 s the line number, again in reverse order with least significant digit first.
this means line 0020.

#8D is the token for FOR.

#20 is the ASCH code for a space.

#49 is the ASCII for |

#D4 is the token for =

#30 is the ASCII for O

#C3 is the token for TO

#20 is the ASCII for a space

#36 is the ASCIl for 6

#30 is the ASCH for O

#00 means end of line

The alternative method to this would require that the whole lot was stored in ASCH
code, taking 3 Bytes to hold FOR instead of 1. In this example there does not
appear to be much gained by tokenising as most of the line is ASClI already. But,
consider the program line PRINT HEXS{PEEK({#501+1)). Here, the ASCIl
equivalent would take 25 Bytes and the tokenised version 14. Since most BASIC
programs look more like this than line 20 above, the savings in space are
considerable.

The second point to consider when looking at the advantages of tokenising is that
the token is in fact a number, and hence can be used directly to calculate the
address in memory at which the entry to its routine is to be found.

To produce this tokenised program there is a special routine in the computer
called, nat surprisingly, a tokenising routine which converts the BASIC typed in by
the user. When the program is listed there is a reverse routine, called a de-
tokeniser, which produces the original text from the tokenised version. There are
some additions and subtractions made by these routines firstly, to save space
when tokenising, and secondly to improve readability when de-tokenising. For
example if we type in a line such as:-

67

1OPRINT HELLO”
and then list i1 the ORIC will print on the screen:-
10 PRINT'HELLO”

It has inserted a space between the line number and the first command although
there was no such space in the line typed in. Secondly, if you examine the original
text described in this section you will see that there is a space between the line
number, 20, and the first command, FOR, but in the tokenised version no such
space exists.

In all modern versions of BASIC, spaces are used merely to improve the readability
of the text and good tokenising routines take them out. Similarly good de-
tokenising routines put them back in. It is a truism that the more work a section of
program has to do, the longer that section has to be and so the system designer
has to set a limit to the abilities of his system. The limit for the ORIC appears to be
the spaces after the line number.

That completes a rather brief look at the various program sections that go into the
make up of an interpretive language like BASIC. To sum up, there is an editor
section, a tokeniser and a de-tokeniser, a dictionary and a control section which
coordinates all the various sections. We will now look at a compiler system, for
comparison, and see how the same facilities are provided.

All computer systems have to have some method of entering and modifying
programs. This is called editing and, in machines like the ORIC, the editor is part of .
the language built into the machine. In the type of system we are now going to look
at the editor is a separate program, which can itself be edited and modified and
thus tailored to suit individual needs. Let us look at how a program is created and
run on a compiler type system.

Firstly the user loads or ‘calls’ the editor to allow him or her to type in the original
text or "source” code of the program. Notice that the code has already been
worked out using pencil and paper before the computer is even approached.
Having entered the program using the editor, the user saves it either on floppy disc
or hard disc or even in the computer's main memory. The exact method used will
depend on the size of the computer installation, the hardware available and the
number of users an the system. The editor program is then exited and a second
program called a compiler is loaded or called. The user's program is then
processed by the compiler to produce machine code which can then be executed
by the computer.

To complete this picture, it should be mentioned that some compilers produce an
intermediate code which is halfway between high level language and the machine
code which a processor actually understands. A second stage of compiling is then
used to produce executable code. The reason behind this two stage approach is
that the first stage is independent of the computer which will ultimately run the
final program. That means that the first part of the compiler is usable by all

68

programmers regardless of the machine they are using. The second part of the
compiler is machine dependent and this is actually the smaller part. The first part
of the compiler does the error checking and reporting an all of the syntax
checking which makes for a large program.

This split compiler technique is often used whete the machine code finally
produced is to be run on a different type of machine to the one being used at the
time to produce the code. This is called ‘cross compiling’, not because itis done in
anger but because the final code is to be carried across to another machine, the
‘target’ computer, to be run. This is the method used to produce the programs that
control washing machines and other such devices which now have a microcomputer
doing all the brain work.

Lastly, mention should be made of those compilers which produce assembly
language as their output. This may seem to be a very peculiar method of working
but again there are hidden advantages. One advantage is that there will be in
existence an assembler program for the processor in question because that
program is virtually the first to be written. Secondly, the production of a form of
code which is understandable by a human means that the performance of the
compiler can be checked for efficiency.

This brief description highlights the main differences between an interpretive
language, like BASIC, and compiled ones like FORTRAN. The advantages and
disadvantges of each system can also be deduced from these differences.

The main advantage of interpreting is that the user has everything available to
him all at once. A program can be stopped, changed and run again with very little
effort. The compiler system requires that the whole program be re-compiled if any
change at all is made. This can make compiler systems very slow in use and leads
necessarily to the concept of modular programs, where any change is hopefully
limited to the module which contains the part to be changed and, thus, only that
part needs be re-compiled. The disadvantages of interpreting are:

Firstly, the final program is slower than a compiled one because the job that the
compiler did has still to be done but now it must be done while the program is
running.

Secondly, the interpreter takes up a lot of the usable memory of the machine and,
hence, the space available to the user is limited.

This latter problem can be alleviated to some extent by ‘'memory mapping’
techniques which are hardware methods of allowing the computer to use a larger
memory space than it can address at one time. This sounds a little like the Dr
Who's description of why the Tardis is larger inside than out, butall it comes down
1o is substitution. imagine the memory map as bricks one on top of the other. One
brick is used by the interpreter, another by the user, another by the operating
system and so on. When the user’'s program is being read, it must be in the
memory map. However, when the instruction to be executed has been obtained,
that brick can be put aside, for the time being, and another put in its place. This
system can increase the total memory space almost indefinitely,at the expense of

69

more and more hardware, without changing the amount of memory avaliable at
any one time,

Compiler systerns can have almost the whole of the memory space available to the
user for his program. The whole of memory is not usually available because there
still has to be a smal! loader program to read in the applications program. In the
case where the user's program is to be putinto ROM and run from the moment the
compuiter is switched on, the whole of memory is available. Typical speed gains of
a compiled program over an interpreted one are as much as 15 or 20 times faster.
With some computers (not the ORIC, leastways not yet} you can get a BASIC
compiler to combine the ease of learning BASIC with a speed of execution
approaching machine code.

Before leaving this subject it ought to be pointed out that one statement in a high
level language results in many instructions in machine code. One method of
measuring the efficiency of a compiler is to measure how much machine code it
produces for a given high level program. Since there is no ORIC BASIC compiler,
measuring BASIC by this technique is an empty exercise, so the approach here is
to measure how long a given program takes to execute. This has led to several so-
called "benchmark’ types of program and all computer manufacturers will quote
figures showing how their machine is better than the competition’s. Unless you
have a really pressing interest in speed, benchmark programs are a useful toy and
not much else. The reason is that different interpreters have different strengths
and weaknesses, just like the humans who wrote them, and hence it is possible to
produce a program that runs faster on machine A than on machine B and vice
versa. What the user should really look for are the facilities provided by the
computer and whether these match up to his requirements.

Memory Usage By BASIC.

The BASIC interpreter in ORIC is a program, just like any other, and it requires
some RAM in which to perform its calculations, to store results and ‘messages’.
The results it stores will mostly be those required by a user’s program, but it must
also store such things as the next statement to be executed, the iast error message
number and other housekeeping information. The ‘'messages’ it stores take the
form of flags to remind itself that some event has occurred. In the ORIC the
character sets are also put into RAM and the interpreter itself takes up the space
above #C000.(See Chapter 3).

The user is mostly unaware of the exact location of anything in memory and can
write programs in BASIC without bothering about where, in memory, his
programs are or what the interpreter does with the rest of the space. When the
user starts to write programs in assembly language and to address memory
locations directly himself, rather than through the interpreter, then he needs to
know a little about what locations are free to be used and which are not. It can also
be helpful to know something about the use the interpreter makes of other
memory locations since this can lead to quick ways of achieving some results.

Zero page is probably the most important RAM area to a programmer so we shall
look at this area first. Locations not used by the operating system appear to be:

70

#03 to #0B; #26 to #31; #8B to #8F. Something of what the other locations
are used for is known. Locations #0C and #0D are used by the status line system
call which is described in Chapter 7. The input buffer is from #35 to #84. This is
the area into which the ORIC puts all keyboard-entered characters untit RETURN is
met. It then analyses the contents of this buffer and takes the appropriate action. if
a machine code program does not expect much in the way of keyboard entry, then
the upper part of this buffer may be used.

The floating point accumulator is stored in locations #DO to #D5 as shown
beiow:-

DO Exponent

D1 High order {(mantissa)
D2

D3

D4 Low order (mantissa)
D5 Sign (0=+ve ~1=-ve)

Rather strangely, there is a subroutine stored in zero page from #E2 to #F9. This
particular subroutine has to be in RAM in order for it to work, but it is still odd to
find zero page used for such a purpose. The routine is used to load the next
character from the program space or from the input buffer into the accumulator.
By using RAM to hold this routine it has been possible to make this section of code
very compact and, therefore, fastin operation, whichin turn leads to a faster BASIC
interpreter. Part of this routine, locations #E9 and #EA are the text pointers which
are together the address in RAM of the next character to be accessed by the
interpreter. This character may come from the keyboard buffer, as in immediate
mode, or from a program.

Other known locations in zero page are #9A and #9B which store the start
address of BASIC programs, which is location #501. Locations #9C and #9D
and #9E and # 9F also seem to be related to program storage. #9E and #9F seem
to hold an address a few bytes beyond the end of the stored program, while #9C
and #9D hold the actual end address.

The rest of known RAM usage is in page 2, apart from page 1 which is taken up by
the 6502's stack. Quite a lot of page 2 is unused, but this is not of much
consequence to a user because this page cannot be used for indirect addressing
(see later) except for JMP commands.

The following information has been supplied by the maker's of the ORIC
computer:-

71

LOCATIONS DESCRIPTION
V1.0 V1.1

21F GRA: =1 graphics mode. =0 text mode.
220 SXTNK: =1 16K =0 48K.
238 XVDU: soft vector to VDU routine.
23B XGETKY: soft vector to get key routine.
23E XPRTCH: soft vector to printer output routine.
241 XSTOUT: soft vector to status line o/p routine.
228 244 INTFS: soft vector to interrupt routine.
228 247 NMIJP: soft vector to NMI routine.
230 24A INTSL: return from interrupt handler.
26A MODE: see separate table.
272 TIMER: used for keyboard.
274 TIMER: used for cursor flash.
276 TIMER: spare.
240D TSPEED: O=fast 1=slow.
24k KBDLY: delay for keyboard auto repeat.
24F KBRPT: repeat rate for auto repeat.
256 PWIDTH: printer width.(Normally 80j.
257 VWIDTH: screen width. {(Normally 40).
2EQ PARAMS: transfer buffer for graphics/sound routines.

The explanation of ‘soft vectors’ is to be found in Chapter 7 along with descriptions
of the system calls available and how to use them. The page 2 locations are listed
here merely to give as complete a picture as possible of the memory usage of the
machine. Lastly, if you look in locations #293 onwards after loading a tape file
using V1.1, you will find the name of the file in this area.

The remaining known locations in page 2 all relate to screen handling. InV1.0 the
start of screen RAM is held in #26D and #26E and the number of screen lines in
#26F. Also, the current cursor row is held in #268 and current cursor column in
#269. #26A is used to hold a number of flags related to screen handling and
character input. This location is used for the same purposes in both versions and is
detailed below:

BIT 7 Spare

BIT 6 Spare

BIT S Mask columns O,1:1=0n

BIT 4 1=Last character was Escape
BIT 3 1=Key click off

BIT 2 Spare

BIT 1 1=VDU on

BIT O 1=Cursor on

#2DF is used to hold the character read from the keyboard in V1.0. The ASCII
code corresponding to that character is put here and the top bit of the location is
also set.

72

In V1.1 the screen handling routines appear to be quite different and the screen
locations are not as they were. Two screen addresses are now held in page 2. At
#278 and #279 there is the address #BBDO which is the start of the second text
line and in #27A and #27B there is #BBAS8 which is the address of the start of
the first text line. #268 and #269 hold the current cursor row and column
respectively as before. Location #268 is now merely used as a counter and not as
an absolute position pointer as before. The number of screen linesis held in #2 7E.

73

CHAPTER 5

Practical Control
Applications.

We are now going to look at some of the ways in which a computer can be used as
a controller. To a large number of people, just sitting at a computer keyboard and
jiggling the keys is sufficient. But to the rest of us, computers are here to do things
just as mundane as mowing the lawn and washing up. In order to do routine
chores, the computer must have information about the device it is controlling and
it must be able to send information to the device to tell it what to do next. This flow
of information to and from the computer is usually known as {nput and Output or
just 1/0 for short.

5.1 Principles Of Input And Output.

If you want to design a computer based controller, you will need to have
knowledge not just of the computer, nor of the computer and what it is to control
but also of the bits which link the computer to the controlled device - these bits are
called the ‘interface’. The interface converts the signals of one world into the
signals of ancther. For example, the ORIC, in common with all other small
computers, uses a 5 volt power supply and all internal signals are some fraction of
this voltage. {To be precise, a O is represented by 0~0.6vand a 1 by 2.4 -5.0v}. If
we want to use the ORIC to contro! an electric light bulb, we must arrange for the
signal levels in the ORIC {of 0~0.6 and 2.4~5.0v) to be converted to Ov and 240v
respectively. This conversion is the job of the interface circuitry and we must be
very careful to get it right or we may have 240v connected to the ORIC,

The 6502 processor has no special provision for input or output and so any
interface has to start off by pretending to be a memory location. By this is meant
that it must look just like any other memory location to the 6502 and it must
remember what it was told because, otherwise, the 6502 will have to keep
reminding it and that is very wasteful of the processor’s time. There are special
purpose chips to do this kind of work; the 6522 is one such device and the use the
ORIC already makes of this has been described in Chapter 4. There are also simpler
devices called 'latches’ which can be used to remember what the computer said to
them and, hence, pass that information on to the rest of the interface.

The 6522 has an internal set of 16 registers and it looks to the processor like 16

74

consecutive memory locations. A latch looks like just one memory location. To use
either device properly, there must be special circuitry to stop the device being
activated when addresses other than its own are accessed by the processor. This
circuitry is called address decoding circuitry and quite a lot of work has been done
for the user already in the ORIC by setting aside Page 3 for input and output and by
supplying a special signa! to indicate when a Page 3 address has been decoded.
This leaves the user with 256 possible memory locations to decode, a much
simpler task than decoding the full memory map of 655386 locations.

As regards supplying information to the computer, the rules are much the same,
except that they now work the other way. If it is desired to know whether or not a
lamp is turned on, the 240v supply to the lamp must be changed to a 2.4-5.0v
signal in such a way as to be absolutely certain that the original 240v cannot
possibly reach the computer, and this signal must be presented to the computer as
a memory location. The memory location has to have the same address decoding
as before, and for the same reasons.

5.2 Parallel Communication.

This foliows on directly from the principles discussed above. The latch used as a
memory location to act as an output port (to use its technical name} has all of its
output pins connected by wires directly to a peripheral device. Because these
wires run side by side, (in parallel} this is called a parallel output system. The
advantages of this method are, firstly, that up to 7 data bits can be transferred at
once and, secondly, the hardware required is fairly simple. To complete the
connection between the computer and the peripheral, nine wires in all are needed
making life a bit more complicated.

The explanations for the strange numbers used above are as follows. An eight way
port can only transfer 7 data bits because one line has to be used to signal to the
peripheral device that new data is available. There have to be 9 wires in all because
one extra wire is needed as a Ov connection to act as a reference line against which
the voltages on the other lines are measured.

Such a system can be used as a basic communication port by the following
method. Firstly, the computer makes sure that the line used for signalling new data
(usually called a ‘strobe’ line) is high. It then sets the required data onto the other 7
lines and pulls the strobe line low. A wait state is now entered, the duration of
which depends on how quickly the system designer thinks the peripheral device
receiving the data can respond and then the strobe line is set high and the cycle
repeated.

There is an obvious flaw in this method, and that is that the computer does not
know if the peripheral device received the data correctly or if it had sufficient time
to deal with it. The way to test for both of these is to introduce "handshaking’. This
requires another connection between the computer and the peripheral, bringing
the total of lines up to 10. The tenth line is used by the peripheral to signal to the
computer that it has accepted the current data. There are two possible ways in
which this can be done. Firstly, the method is as before but when the computer

75

sets the strobe line fow it then fooks at the handshaking line and waits until it
detects that this line is low. At this point the computer thinks “all is well" and carries
on as before. The problem now is that if the handshaking line is held low
continuously, the computer does not recognise this as a fault condition. This leads
to the use of what is called ‘full handshaking’. The computer starts off by ensuring
that the strabe line is high and then it tests the handshake line to make sure that it
is also high. If it is not, a fault is signalled, or the computer goes back to the start
again. If all is well, the computer puts dataon the datalines and pulis the strobe line
low. It now looks at the handshake line and waits till it is pulled low by the
peripheral, If nothing happens after a fixed period of time, the computer aborts the
data transfer and signals a fault to the operator. All being well, the handshake line
is pulled low by the peripheral, at which pointthe computer releases the strobe line
and continues looking at the handshake line until it too goes high. If it does not,
after the timeout interval a fault is again signalled. When the handshake line goes
high, the system is back to the start condition with both lines high and both the
computer and the peripheral aware that one lump of data has been transferred
without fault and the cycle can be safely repeated.

This last method allows data transfer 1o take place safely between machines of
very different operating speeds because it ensures that the faster machine has to
run at the speed of the slower. It can also be used for computer to computer
communication even though one or both computers are doing other things as well.

5.3 Serial Communication.

The term serial communication refers to the method of sending information one
bit at a time. In the parallel system, 7 data bits were sent at once; in this system
only one bit is sent. To further simplify the connections between sender and
receiver, there is no handshaking line as described for the parallel connection. The
simplest serial link consists of just two wires, one for the reference Ov level and
one for the data. Since there is no strobe line either, some other mechanism must
be used to take its place. The mechanism used is that of timing. With the advent of
crystal oscillators it has become possible to time events to very fine limits and
serial communications systems make full use of this.

Let us first look at the way a serial transmitter makes up the message it is going to
send and then look at how the receiver makes sense of it. Assume that the
message to be sent is the ASCli code for U. The seven bit code willbe 10101018
and the serial transmitter will be loaded with this information. It will also know how
fast to send the message either by default (the settings it assumes at power up) or
by later programming.

Having been given a message to send the transmitter will first send a start bit. This
means that the transmitter will set its output pin to the voltage level corresponding
to a start bit for a period of time that corresponds to one bit period. The transmitter
will then look at the first message bit to be sent. In our case this is a 1, so the
transmitter will set its output pin to the state which corresponds to a 1 for one bit
period. These descriptions of the state of the output are a little devious because the
voltage leve! on the pin my be +bvtorepresenta 1 orit may be Ov. Italldepends on

76

the conventions being used. However, the rest of the messaga is sent in the same
way with the output pin being set to correspond to O's and 1's as the bit pattern
being sent dictates, for a bit period each. When all the message has been sent, one
or more stop bits are also sent to signify end of group. A stop bitcorresponds to the
opposite voitage to a start bit. If two stop bits are being sent, the transmitter will
hold its output voltage at that level for two bit periods.

This completes the transmission of the message and a graph of voltoge against
time for the transmission is shown in Figure 5.1.

{ VOLTS

e e s — -

1
|
]
!
|
!
|
l
|
-t

o START 1 0 1 o 1 4] 1 S10P BIFS TiME
|Ir

Figure 5.1

Notice that this method of transmitting does not have any knowledge of the state
of the receiver. For all that we know at present the receiver may not even be there
and the message would still be sem. Methods exist for the receiver to send
information back to the transmitter and we will look at one or two of these later.

When the transmitter sends the first start bit, the receiver is alerted that something
is happening by the change of state of its input pin {which we have assumed is
connected to the transmitter’s output pin). The receiver must have two other facts.
Firstly it must know how long a bit period is going to be and secondly it must know
how many data bits are going to be sent. in our example we sent 1 start bit, seven
data bits and one or two stop bits. The number of stop bits is not critical, but
assume for now that we sent two.

77

Having received the leading edge of a start bit, the receiver waits for one half of a
bit time and then tests its input pin again. If the start bit is stifl there, the receiver
assumes that a valid transmission is taking place. [t now waits for one bittime and
tests the input pin again. The voltage on the input pin will now correspond to the
first data bit and so the receiver can log this in as the most significant bit. It now
waits for another bit time and then logs in the next bit and so on for the total
number of bits to be received. When all 7 bits have been received the two stop bits
are used to make sure the input pin is set back to its original voltage level. The
receiver does not bother to log in the stop bits so the actual number sentis largely
irrelevent.

Each message sentis timed as from the leading edge of the first start bit and all bits
sent are logged in at half way points, thus minimising errors due to timing
differences between receiver and transmitter. The other main point to note is that
the number of bits sent can be varied under program control. Thus the serial
system could send 7, 8, or even 9 bits at a time, whereas the parallel method is
fixed at the number of wires used. (Actually the parallel method can send less than
the number of wires available, but obviously not more). The disadvantage of the
serial method is that both ends have to know what is going on and both have to
operate at the same rate.

Serial communication standards allow the use of two other lines to prevent
transmission taking place when the receiver is not ready. These two lines are
called CTS (Clear To Send) and RTS (Request To Send). As might be expected the
transmitter first asserts RTS to signal to the receiver that it wants to send a
message. The receiver asserts CTS to say ‘0.K". If at any time CTS is released, the
transmitter must stop sending and must not start again until CTS is again asserted.
This technique allows a slow printer to receive information at its printing rate.

The second method for the receiver to send information back to the transmitter is
to use a second serial transmission link. In practice this only means adding 1 wire
to those we already have. The transmitter can now make enquiries of the receiver
using standard control codes and the receiver can make appropriate replies.

No mention has been made so far of what constitutes a transmitter or receiver.
While it is possible to program a microprocessor to take on this task it is usually
considered to be a waste of the processor’s time to be involved in such mundane
operations and the job is delegated to a special purpose chip. This device looks like
two memory locations to the processor, and when given a message to send in the
form of a byte, it sends it over the serial line and signals back to the processorthat it
has finished and is waiting for the next byte to send. Similarly, the device can
receive serial information and convert it into a data byte which the processor can
then read. Again the processor can be signalled that a byte is ready or it can
interrogate the chip on a regular basis {called ‘polling’} to check for data being
available. Notice that if the polling technique is used, the time interval between
polis has to be less than the time taken to receive one byte or there is a danger that
a received byte will be overwritten by a second one before it can be read in by the
processor.

78

5.4 ORIC’s Printer Port.

This is a standard parallel output port used to drive printers with a Centronics type
interface. The maximum number of data bits is 8 and there is one strobe line and
one acknowledge line. The protocol used to drive the printer has already been
described in Chapter 3, but a brief re-capitulation may not come amiss,

1 ORIC puts data on the 8 data lines.

2 ORIC puills the strobe line low.

3 ORIC releases the strobe line.

4 ORIC waits for Acknowledge line to go from low to high.

If the acknowledge line does not do what it is supposed to do within about 15
seconds, ORIC assumes the printer is dead and prints a message to that effecton
the screen.

The printer port is driven from the internal 652 2 which has two 8 way 10 ports as
well as 4 other special pins. The I/0 port used for the printer is also used to drive
the sound chip as well and hence it is not available for general purpose 1/0.
However it can be used for output if the circuit itis driving can be made to look like
a Centronics printer. In fact this is not a very difficult thing to do and a circuit to
latch the printer output is shown in Figure 5.2. All that is needed is a 7415374
latch with the strobe line connected to the clock input of the latch and also
connected to the acknowledge input of the ORIC. To demonstrate that this actually
does work the circuit of Figure 5.3 is used where the outputs of the latch are
buffered by the 7415240 and used to drive 8 LEDs to signal the state of the data
lines.

\ +5v

20

1 :
3 s f—————a
[4 6 }——— e
7 ? 7 of e
4 LATCHED
9 8 L 12 p——r———¢ DATA
s out
ORIC 1 13 3 15—
13 14 ; [T S,
15 17 19 —e
17 18 e
19
2.20 10 1
/ ov
Figure 5.2

79

R : m 2700 A
. a5 18 ———’VWW‘J‘——
S
.
E:. SR N . _—MW
— 1 7 14 f——AANWY
. . 4
S e B L 12 ———-W
¢ AS . s
. G ————{ 1 > 9 ———-’\/\
. 5.2 a
Y ——— 113 o 7 —V
pr e # (SSSEUS— Py 5 A
.
. [— L [) U
o 8x2700 BxXLEDS

S

Figure 5.3

The following short programs demonstrate the method of using such an output.
Binary Counting Demonstration.

10 FOR 1-0 70 255
20 LPRINT CHR$(I);
30 WAIT 40

40 NEXT |

50 GOTO 10

This makes the LEDs count up in binary. Note the semi-colon at the end of line 20.
If this is left out the ORIC will send the characters corresponding to RETURN and
LINE FEED after CHR$(!) and the LEDs will thus permamently display #O0A.

Moving Dot.

10 1=.5

20 REPEAT

30 I=1*2

40 LPRINT CHR$(I);
50 WAIT 40

60 UNTIL 1=128
70 GOTO 10

This makes each LED in turn light up and hence a dot of light seems to move along
the row.

80

Moving Dot Back And Forth.

10 1=0.5

20 REPEAT

30 I=I*2

40 LPRINT CHR${1);
50 WAIT 40

60 UNTIL =128
70 REPEAT

80 i=1/2

90 LPRINT CHR$());
100 WAIT 40

110 UNTIL I=1

120 GOTO 20

Now the moving dot moves backwards and forwards along the row.
Bouncing Dots.

10 DATA 129,66,36,24,36,66

20FORI=0TO S

30 READ A

40 LPRINT CHR$(A);

50 WAIT 40

60 NEXT i

70 RESTORE

80 GOTO 20

Two dots of light, one at each end, move towards the centre where they meet,
bounce off each other and go back to their start positions and then repeat.

\ + 5y

24 17
a7 20 151
15
AG 21 7 4]
4 ST ——
1 -
A5 22 5 S ——
4 e ———
A4 23 .9 18 P/ ONLY LOW FOR
ORIC o ADDRESS #3FF
A3 20 24
7
A2 21 a
: I——
5 E——
Al 22 2 ERER—
AQ 23 -
19 12 18
o l % |
. / Ov
Figure 5.4

Pins 18 and 19 on each decoder go to |/0: Pin 24 on each decoder goes to +5v.

81

5.5 1/0 Via Page Three.

The printer port can only be used to output a bit pattern. This means it can only ever
be used to drive displays, such as the LED display just described, or motor driven
window displays such as those used in toy shops where all that is needed is to start
and stop motors to a fixed time scale. If some knowledge of what is happening
outside the computer is needed then a different approach must be used. We must
now use the /0 section of the memory map which, as discussed in Chapter 3, is
the address range #300 to #3FF or Page 3 as it is usually known.

Table 5.1

Address A7 AB A5 A4 1 2 3 456 7 8 910111213141516
300-30F _O Q 1 0 Qloltit it ittt atb1 i
310-31F O 0 Q 1 L1jot1 i1 i1 1111114131 11
320-32F O) 1 CRRERROIANAREEERAREREE RN ERERERANL
330-33F 0 0 1 RRNIEAELERERRRER RN R R RN
340-34F 0 1 o] D1t tjojrptgr gttt
350-35F 8] 1 0 IRERREERER R AR ERERERER R R
360~36F 0 1 1 ol prfofr vt
370-37F O 1 1 1 prlrpritgri ottt i1l i1t
380-38F 1 0O 0 CEREERREANARRA AR ARRERERERER KR
390~-39F 1 [¢) 0 RN R AR R ER R AR AR AN ER IR
3A0-3AF 1 0 1 Oj1liptitjtrpr o111
3B0-3BF 1 0 1 IR AR IR IR AR ERERER A EBERER
3C0-3CF 1 1 0 PEREEEEEERER IR ERERERERER AR R
3D0-3DF 1 1 0 AR EEEEERENER SN ERENERERER A AR
3EC-3EF 1 1 CEREREAREEAE AR AR ININERERERABERIRS
3F0-3FF 1 1 1 TP vttt iy riiit 1 jo

The ORIC treats all addresses in Page 3 as 1/0 and a special line, appropriately
called 1/0, is pulled low when such an address is decoded internally. This greatly
simplifies things for the hardware designer because now only 8 address lines
need to be decoded to give a unique address within Page 3. Consider the circuit
diagram shown in Figure 5.4. The 74154 is an address decoding chip which
accepts 4 input lines and decodes the 16 possible states of those lines into 16
output lines. {f the address lines A4-A7 are fed into this chip then it will produce a
different output for every increase in the address of 16. Table 5.1 explains this
more clearly.

From the table it can be seen that an address in the range # 350~# 35F will make
line 6 go low. A second 74154 is used to decode the lower address lines AO-A3,
and the outputs from this chip go low for individual byte addresses in the range O
to #F. Because each 74154 is only enabled when a Page 3 address is decoded,

82

using the 170 line, their outputs will only respond to addresses in the required
range. When an 1/0 address is decoded, other than for the internal 6522 in the
range # 300 to #30F, then the I/0 CONTROL line must be pulled low to disable
the internal 6522. The reason for this is that the internal address decoding only
goes as far as decoding a Page 3 address, and it is up to the designer of the 1/0
circuitry to mask out the internal 6522,

We now have a choice of lines which, between them, allow us to decode any byte
address in Page 3. If, for example, we wanted address # 356 we would choose line
3 from the top 74154 and line 6 from the bottom one. These two lines would both
be low only when address #3586 was accessed by the ORIC. If we combine these
two lines in a NOR gate and invert its output the resultant line will only go low for
that address.

This technique can be used either to write to latches such as the 7415373 used
on the printer port or it can be used to read in from a device such as the 74105244,
In order to be certain of latching and/or reading data at the right time (i.e. when we
know that the data is valid) we must synchronise our external circuitry with the
ORIC's own clock. We do this by using Q2 to ensure that our device select line is
jow only during the time that Q2 is high. The complete circuit is now shown in
Figure 5.5. Itis not strictly necessary to time the input accesses using Q2 butitis
good practice, and it is necessary to time the outputs,

A7
\ 2F N 7

A7 A6 7
23 L—J 21 4
AB A5 1 13 1)
24 L1422 5 lo = write
A5 sl PRI n
As L. 20 19 18 ‘
1 |
A3
17 A3 £a0 17
A2 A2 7
15 F—321 4
Al Al 1 4 6 .o
13 —J22 5 8§19 E_D>——>B
AO AO 4 5 lo = read
5 —{?%9 " 18
/0
a2 |2 RN
g B NET N EE—
vo L6 N_3

Control \

Figure 5.5 (a) Outputs A and B lead to Figure 5.5 (b)

83

LATCHED
ATA

+ Bv
l DAT.
D7 ouT
2

22 3 e D7
o7 D6
14 4 Z 5 —eD6
D6 o5 L
19 7 S 6 }——e D5
D5 3
D4
ORIC 18 8 7 9pl—eD4
D4 4
D3
13 12}——eD5
16
D3 02
9 14 15} —eD2
D2 o1
12 17 16 }——e D1
D1 50
DO 11 101
/ \ Ov
A
(DATA
IN
07 s 2 ——en7
D6 J3 7 17 }——aD6
4
05 f16 | 4}——eD5
[
bl 5 2 15} aD4
4
D3 14 4 6 }——e D3
D2
7 13 e D2
D1
12 8 §——e D1
DO
9 11 }——e DO
11910
5 1|
e —Ov

Figure 5.5 (b) A and B take their inputs from Figure .5.5(a)

84

If the components shown in Figure 5.5 are added to the circuit of Figure 5.4 we
have acomplete input and output system with 8 input lines and 8 output lines. The
obvious way to test that this system works is to connect the outputs to the inputs
and then check that whatever is written out is equal to whatever is read in. If the
circuit in Figure 5.4 is used exactly as shown then the relevant addresses are
#3FF for the output and # 3FF for the input. The following program could be used
for testing.

10 A%=

20 FOR I=0 TO 255

30 POKE #3FF,l

40 IF PEEK(#3FF)<>1 THEN A%=1:J=I:1=255

50 NEXT |
60 IF A%=1 THEN PRINT "ERROR AT ";J
70 GOTO 10

This program will cycle through all the possible values for the output port and
check that the input port receives the identical value. if it does not, the program will
print ERROR AT and then the value at which the test failed. It will in any case try
again because line 70 sends it back to the beginning regardles of the testin line
40.

The system described can be used for input and output of digital signals and can
be extended if required to accomodate up to 240 input and./or output ports. Itis
not recommended to try to use all 256 possible addresses for user /0 because to
do so means completely disabling the internal 6522 which uses address #300 to
#30F. However for expanded 1/0 systems, and even for a system no bigger than
the one described, it is more efficientin terms of hardware to use an external 6522
and to master the extra programming required to make it work.

5.6 Using An External 6522

The 6522 is one of a family of chips which were produced to relieve the micro-
computer system designer of the task of designing his or her own input and output
structures. This particular device could be called second, or even maybe third,
generation and consequently it has a wide range of built in facilities. It is not
necessary to use all of these facilities all of the time, indeed it might well be
impossible to do so.

The primary purpose of any 1/0 device is to transfer information either to or from
the micro-processor. in the 6522 this is achieved by the use of two 8-bit ports
which can be treated rather like the two latches described in the previous section
with the exception that each bit of each latch can be either input or output and can
even have its direction changed midstream, so to speak. Associated with each port
is a direction register which is set up by the micro-processor. The data direction
register determines whether the bits in a port are input or output. Bit O of a data
direction register controls bit O of its port, bit 1 controls portbit 1 andsoon. ifa bit
in a data direction register (DDR} is set to O then the corresponding bitin the portis
an input, if the DDR bit is a 1 then the port bit is an output. The two ports are

85

referred to as ports A and B and the corresponding DDR's as DDRA and DDRB.

This system produces a very powerful and flexible 170 arrangement since any pin
can be input or output or even swapped between the two as necessary. However, it
is worth noting that if the direction of a pin is changed from input to output, the
voltage level on that pin cannot be predicted. Thus having changed it frominput to
output, it must then be written to, to guarantee that it is at a known state.

When a 6522 is connected to a micro-processor in the approved manner, it looks
to the micro-processor like 16 consecutive memory locations. The first and last of
these locations are the normal ports B and A respectively. The third and fourth
locations are the direction registers B and A respectively. The second location is a
repeat of port A but using this location requires that handshaking of the data takes
place. There are 6 locations used for the two timers available and the location
which is used as a shift register. That leaves 4 locations to deal with. Two of these
are control registers which between them govern the manner in which the various
timers, control pins and shift register behave. Lastly there are two locations
controlling the 6522's ability to interrupt the micro-processor.

The above brief description demonstrates thatthe 6522 is no toy. To make full use
of the device requires a complete technical description, which is beyond the scope
of this book, and a fair amount of experimentation. This latter method cannot be
recommended too highly. Itis all very well to read books on such subjects and on
the strength of this, proclaim expertise. We cannot claim any skills in any subject
until we have actually gone out and done it.

a7
25 20 24
A 7
a6 |22 Hoo ;, w xr—]23 9
A5 21 4 35 8 8
A2
s 120 Ll PR 36 s
i ‘ L E 7
A ar
NI 28122 A0 8 4 PORT ‘A
A2 38 3
15 5
Al A 23
AOD 13 07 4 2
1/0 |2 26 3 !
ORIC \ 19 12 18 o6 f,, ¢ o
05 2 2b—-0
22 28 2 e e ——
D7 T2 D4 17 ——_;
06 29 16 [
1
o5} 19 LEN P . .
nal 18 02 |, .
03 16 - o1 22 14
o2l 2 13 3 PORT '8
12 20 {33 2
o1 w2l 2
S
00 10 25 i 1
/ 22 0
RI+] L
N
. :; 38 1
Rw LN o
1/0 Control }-2 t r
ov |8 [
Ji3a
Figure 5.6

86

Returning to our 6522, the circuit diagram in Figure 5.6 shows how to connect
such a device to the ORIC using the facilities available an the expansion connector.
If this circuit is followed exactly, the base address ofthe 652 2 will be at #3F0 and
hence it will occupy the locations #3FO0 to # 3FF. For experimental purposes we
shall use an LED output monitor similar to the one used on the printer port and a
switch array to simulate changing input conditions. These additions are shown in
Figure 5.7.

| j + 5v

Figure 5.7

To program this 6522, the data direction registers are at addresses #3F2 and
#3F3. To set both ports to be outputs, these locations should be set to all ones.
This is done using POKE #3F2,255 and POKE #3F3,255. Now any ouput pin
can be set high or low by using POKE again. Thus to set the lower 4 bits of port A
high and the upper 4 bits low the instruction would be POKE #3FF,15. Forport B
the instruction would be POKE #3F0,15. in V1.0 the second argument to the
POKE command has to be a decimal number butin V1.1 a hexadecimal one can be
used.Thus POKE #3FF,#F would be correct in V1.1,

When using a port, ar bits of a port, as inputs, the first step is to set the approgpriate

bits of the data direction register to zero. Thus, to set port A to all inputs the
command would be POKE #3F3,0. Now, when reading the inputs use PEEK(# 3FF).

87

The next instructions must mask out those bits which are not required. In
assembly language there are logical commands to perform this function. Using
BASIC there are no such commands and other ways must be found. One such
method is to continually multiply the PEEK'd number by 2, which is equivalent in
assembly language to shifting the number left by one, and subtracting 256 if the
number exceeds this value, until the required bit is multiplied out. If the result is
greater than 256 the bit required was a .1, and if less than 256 then it was a O.

5.7 Optical Isolation.

Figurs 5.8

Mention has already been made of the fact that an interface must serve notonly as
asignal conditioner butalso as a protective device to prevent the worst excesses of
the outside world from reaching the computer. One of the best and cheapest ways
of doing this is to use optical isolation.

An optical isolator consists of a light emitting diode and a photo-transistor both
arranged so that the light from the diode will activate the transistor. These two are
sealed into a light proof package and are provided with separate external
connections on opposite sides of the package. The arrangement is shown in
Figure 5.8. There is no electrical connection between the LED and the transistor,
they are ‘isolated’ from each other, the only method of passing information
between the two is with the beam of light. If the supply to the LED comes from one
circuit, for example from the output of a computer, and the supply to the transistor
from another, for example a 12v D.C. supply to drive a relay, then the computer can
operate the relay without there being any electrical connection between the two.

88

TI)e circuit is shown in Figure 5.9. The relay could be used to switch mains supply
without there being any danger of the mains becoming connected to the
computer’s output should the relay suffer catastrophic failure.

+ 12v

COMPUTER

Figure 5.9

Such a failure might seem rather remote, but remember that a good designer has
to take into consideration that it might not be he who wires up the final circuit, that
someone might spill coffee on the workings, or worse, or even that the unthinkable
might happen and the relay just fail catastrophically.

Before going on to the design of such circuits, we should note that using a
standard relay to switch mains voltage is not a good idea. The contacts will arc and
spark and produce a large amount of electrical interference of the type to which
computers are very sensitive. If a mains device is to be controlled, then use the tool
for the job, a solid state relay. This relay has built in optical isolation and alsouses a
solid state switch to turn the mains on and off so that no arcing or sparking occurs.
The design is further arranged so that the relay can only switch on or off at zero
current points in the mains cycle and consequently there is virtually no
interference produced at all. This is demonstrated in Figure 5.10.

89

MAINS

CONTROL }

OUTPUT | -
| N

Figure 5.10

Solid state relays are available in all sorts of sizes and power ratings and, if used
correctly, are far more reliable than their mechanical counterparts.

™~ . +V INTERFACE
|
:,.._l_
LOAD |
P _ ot
i Eeb A HFE=60
COMPUTER v PzLf 1 18Ka --
: A HFE=50
Rb = f————
<
ov Ov INTERFACE

J

Figure 5.11

90

The circuit in Figure 5.11 is a complete optically isolated interface for any
computer. Before dealing with the arithmetic involved in designing su-h acircuit, a
word or two about the components used is in order:

Firstly, the output of the computer interface driver chip, which may b~ a 6522 ora
74LS374 latch, is inverted before being used to drive the first transistor. The
reason for this is that the 6522 chip sets all its outputs high at switch on or Reset
and hence if the output were notinverted the transistor would be switched on also.
This would result in alf peripheral devices being switched on when the computer
was switched on, which is an unsafe condition. If 8 741.5374 latch is tn be used
then care must be taken to ensure that the correct data is written tn the latch
immediately after powering up the computer because the state of the latches
output cannot be guaranteed at switch on. For this reason the 6522 chip is
strongly recommended for control applications. Latches may be used in situations
where it does not matter if the peripheral device is on or not. The microsystem
designer may well decide to use a latch even so bacause he has total control over
the program which the computer executes at switch on and hence he canarrange
for it to rush round and set the output latches to safe conditions,

Secondly, a transistor is used to drive the LED instead of this hemg driven directly
from an output port. The reason for this is that the maximum voltaga level on an
output pin of a TTL compatible device can only be guatanteed to be +2.4v. Thus,
although at switch on the output of such a device would be high, it may only be as
high as +2.4v leaving 2.6v to drive current through the LED. It may be argued that
in a particular interface design this amount of drive is a sufficiently small risk to be
ignored. Do not pay any attention to such arguments. The job of an interface
designer is to produce safe, working, reliable circuits, not to take risks. If the
output of this port is inverted, the resulting output voltage cannot be higher than
0.6v at switch on and this is not enough to turn on a transistor. Consequently the
design is safe and risk free. The cost of an inverter is a very small price to pay for
peace of mind.

Lastly the arrangement of the driver transistors which are connected to the load is
chosen because this is the system which allows the most efficient operation.
Using this method, the current drawn by the interface when there is no current
throught the load is merely the leakage current of the devices used, a micro-amp or
two perhaps. When the interface circuit is switched on by the computer, apart
from the necessary current throught the LED, the only current not used by the load
is the base drive current to the first transistor of the output pair. Consequently this
arrangement makes very efficient use of the power available.

Looking at the detailed design of such a circuit, we will start with the output device.
This only has to supply the base current to transistor T1 and hence will not be
unduly overworked. The first step is to determine how much currentis available to
drive the LED. !f this is being driven from a separate supply used solely for this
purpose then clearly there is all the power available which we choase to have.
However, if the LED is being driven from the computer’s own supply, which is the
more likely case, then we must be much more careful in our design The ORIC's
own power supply is designed to supply the power consumed by the ORIC itself
and no more. Clearly, there is only a small demand that can he imade on this supply

91

or it may be overloaded and destroyed. To put numbers into the argument, the
ORIC is driven from a mains adapter which produces 9v with a power capacity of
6.4 VA. Translated, this means that the adapter can supply 9v at 5.4/9 amps
giving 0.6 amps. Inside the ORIC is a regulator which converts the 9v to bv and
this regulator is capable of handling 1.5 amps. Thus, any overload is going to
destroy the mains adapter rather than the internal regulator. Modern regulators
are so constructed that destroying them by overload is practically impossible
anyway, so we need not worry too much on that score.

The ORIC itself draws about .6 amps when running so the external adapter is fairly
fully loaded. Even so, an extra 10mA on top of the existing 600 is not going to
make a big difference so we can assume that there is 10mA available for the LED.
Note that if a large number (greater than 2) of optically isolated interfaces are
being envisaged then a separate interface power supply is essential.

With this in mind we shall limit the LED current to 10OmA. The voltage drop across
the diode will he 1.6v so that the resistor needed is given by the formula:-

Rc=({5-1.6-Vce),/ 10 Kohms

Where Vce is the voltage drop across the transistor, typicaily 0.2v.
Thus Re is 320 ohms. The nearest preferred value is 330 ohms and hence this will
be our choice.

If we assume that the transistor has a current gain of -about 50, then we can
calculate the required base current as ib=(collector current)/current gain.

Thus ib=10/50 mA=200micro-amps.

The lowest voltage we can guarantee out of the inverter is 2.4v, as mentioned
already, and so the base resistor Rb is given by:-

Rb={2.4-Vbe)/ 200 Mohms. Where Vbe is the voltage drop between the base and
the emmitter of the transistor, typically 0.6v. Thus Rb=9Kohms. The nearest
preferred value to this is 9.1Kohms and again this will be our choice.

We must now lock at the optical isolator itself. The main characteristic of such a
device is that the output transistor will allow a current to flow which is a fixed
percentage of the current in the LED. This percentage is called the transfer ratio of
the device. 1t is unfortunate that transfer ratios depend on the actual current
through the LED rather than being fixed, but this is another complication we have
to live with. However, we now know the LED currentis to be 1OmA and sowe can
look up the transfer ratio of the isolator in the maker’s data sheet. Devices are
available with transfer ratios between 10% and 400% depending on the price. Let
us be modest and assume a transfer ratio of 20%. The current available in the
output transistor of the optical isolator will therefore be 10*20/100mA giving
2mA. This current has two possible paths. The first is through the 100Kohm
resistor to Ov and the second is through the 18Kohm resistor and the two
transistors to Ov. The path through the two transistors is represented by a voltage
drop of 1.2v, 0.6v per transistor. It is possible to calculate the current split exactly,

92

but let us take a different approach. Assume, for the sake of argument, that the
voltage at the emitter of the isolator transistor is 24v. How much current will each
circuit now draw? Through the 100Kohm resistor there will be 24,/100mA or
.24mA. Through the two transistors and the 18Kohm resistor there will be (24—
1.2)/18mA or 1.26mA. Thus the total current drain will be 1.5mA, so the output
circuitry used cannot draw as much current as is available and hence we have just
calculated the current that they will draw.

Since the output transistors will have a drive current of 1.26mA and assuming
again that each has a current gain of 50, the drive capability of the final circuit is
1.25*50*50mA=3.15Amps. This sort of capability ought to be enough for
anyone. Should a greater drive be required, the easiest solution is to increase the
current gain of one or both of the output transistors by choosing a type with the
gain required. This will involve more expense but is probably the most reliable
solution.

Note that the figure of 3.15Amps is a maximum capability at 24v. ifa 12v supply
were used the capability would be reduced unless circuit changes were made. In
this case the 18K resistor would have to be reduced to bring the drive currentinto
the base of the first output transistor back 1o its original level. The method is fairly
simple. Ignore the 100K resistor for the moment. {Pretend it is not there). The
voltage at the emitter of the isolator transistor is 12v maximum. Base drive
required is 1.26mA. Thus the value of the resistor is given by :-

R={12-1.2)/1.26K giving R=8.75K. The nearest pieferred value is 8.2K so
choose that. The current available from the opto-isolator transistor is still 2mA
since we have not changed 'the LED current and so the 100K resistor can stay
because it will draw an extra 0.12mA only.

The reason for the 100K resistor being used at all is to provide a path to Ov for the
stored charge in the base region of the first output transistor so that when the
computer switches the optical isolator off, the output transistor also switches off
fairly smartly. As a secondary effect this resistor provides a path for leakage
current in the output transistors, which may only amount to a micro amp or so but
it is nice to have somewhere to go.

The same sort of calculations are used for the input circuit shown in Figure 5.12.

The arguments will not be repeated here since the previous essay contains all the
necessary information to enable readers to work it all out for themselves.

93

+12v + 5v //—

68K

Computer
or
Interface Chip

Vin

Figure 5.12

94

CHAPTER 6

Assembly Language
Programming

In this chapter we are going to delve a little deeper into the ORIC and find out what
makes it tick. Mention has been made aiready of the fact that the processor at the
heart of this machine is a 6502 and in this chapter we are going to explore this
device. It has previously been described both as a micro-processor and as the
brains of the organisation. It is now time to find out what is meant by these terms.

A processor is a device that interprets and executes commands. These commands
may be part of a program, as in a computer, but that is not essential to the
processor. A micro-processor is a one-chip implementation of a processor. In
these impersonal days all chips are given numbers rather than names to identify
them, and the number we are now most interested in is 6502,

The commands a processor interprets take the form of a fixed number of bits. The
common fixed numbers in use today are 8 and 16 although 4, 12 and 32 bit
processors exist. The 6502 accepts 8 bit commands and we usually express
these in hexadecimal notation.

6.1 Assembly Language for the ORIC.

The 6502 processor can interpret approximately 200 different commands. These
commands are grouped into families such as LOAD, STORE, COMPARE and soon
with each family having more or less members. depending on how important the
processor’s designers felt a certain family was. It is possible to write programs for
the 6502, or for any processor for that matter, in 8 bit form but itis obviously avery
slow method of programming and rather prone to error. To make life easier for the
programrer the designers have produced a language called Assembly Language
which is an organised collection of mnemonics with a grammatical structure.
Pragrams can be written in this language and translated directly into 8 bit code by
a special program called an Assembiler.

This system relieves the programmer of an immense amount of drudgery and also

95

checks the program for grammatical errors. In other words, it prevents the
programimer from trying to make the processor do something it has not been
designed to do.

The best way of describing how this actually works is by illustration. We will use a
very short seaimont of a program listing.

START LDA @#80 A9 80
STA #7C00 8D 00 7C

There are usually no line numbers in Assembler. Labels are used, as in the firstline,
to mark places to which the processor must be directed. This is similar to GOTOQ in
BASIC.

The segment above shows a label at the start of the first line, followed by a
mnemonic, for the instruction to load the accumulator (LDA). The @ sign means
that it is actually the number following the @ sign that must be loaded into the
accumulator and the # sign means that the number is in hexadecimal. Different
Assemblers use different characters for these purposes but the results are the
same. The second line has no label and the mnemonic means store the contents of
the accumulator at the absolute address which follows, again in hexadecimal.

To the right of the Assembly language are the hexadecimal numbers which the
Assembler has produced. LDA # is thus A9, STA is 8D and the 00 and 7C are the
address 7C00 with the bytes reversed. This byte reversal of addresses is a
peculiarity of the 6502 and explains why DEEK and DOKE reverse the order of the
bytes that they operate on. (Because if you DOKE $400, #7C00 then at #400 the
byte #00 will appear and at #401 the byte #7C giving an address just as that
produced by the Assembler. Similarly DEEKing $400 wil! return #7C00 giving a
valid address).

Programs written in Assembly language run extremely quickly. For example, the
command LDA @#80 would be carried out in 2 clock cycies. Since the standard
clock frequency for the 6502 is 1MHZ, this translates to 2 micro-seconds.
{2*101-6 seconds). In other words the 6502 could do this 500,000 times every
second.

To be able to use Assembly language at all, some knowledge of how the 6502
processor is made is essential. The term used to describe a processor’s internal
structure is ‘architecture’. Figure 6.1 shows the architecture of the 6502 which is
not very useful from our point of view. However, from this picture a ‘programmer’s
model’ can be derived and this is shown in Figure 6.2. As might be expected from
the name, the programmer’'s model contains the information needed for a
programmer to actually use the device. A knowledge of the instruction set is also
required.

The programmer’s model contains an accumulator, two index registers- X and Y, a

status register, a stack pointer and a program counter. The program counter
always contains the address of the next instruction to be executed.

96

INTERNAL DATA

I r—ar—l

| 1 —

> DATA BUS

w
0
S
X

Ly 3 x il

L[>
M ADDRESS
u ‘BUS

Figure 6.1

The accumulator is the register that is used for all arithmetical and logical
operations. It can be loaded either from memory or immediately {as in LDA
@#80), or the X or the Y registers can have their contents transferred into it.

The X and Y index registers are used either to keep a count of how many times a
certain operation has been performed, or as aids in addressing areas of memory.

The status register is really a collection of bistables (electronic devices which can
have one of two states) which remember certain things about the last instruction
to be executed. For example, the LDA instruction affects the Z and N flags in the
status register. If, after executing this instruction the accumulator contained a
negative number, then the N flag would be set. However the LDA instruction does
not affect the C flag, so it will remain in whatever state it was in before this
command was executed. This carrying on of bits of the status register from one
instruction to the next can become important when writing code to interface
physical devices to a computer.

The status register comprises 8 bits, as might be expected in an 8-bit machine, but
only 7 of these bits are used. The spare one is advertised as being for future

97

expansion but “oubtfulif the manufacturers will bother now as 16 and 32 bit
machines are 1+ 11 over the next generation of computers.

The flags storedd i thie status register are Negative, Overflow, Break, Decimal, Zero
and Cany.

In the following descriptions of what event sets what flag, it is assumed that the
description applirs to an instruction which is capable of modifying that flag. For
information on that subject, refer to the instruction set definitions in this chapter.

The Negative flag is set to a one by an instruction which produces a negative result.

If tha result was nositive, the N flag will be cleared.

A ACCUMULATOR
X REGISTER
Y REGISTER
S STACK POINTER

i

| pcH ¢ pPCL |PROGRAM COUNTER
NV BD ! ZC|STATUS REGISTER

E-CARRY

ZERO

——IRQ DISABLE
DECIMAL MODE
BRK FLAG

OVERFLOW
NEGATIVE

Figure 6.2 PROGRAMMER'S MODEL

98

The Qverflow flag is set by binary overflow from bit 6 to bit 7. See the section on
binary arithmetic in chapter 4 for a full explanation.

The Break flag is set when a BREAK instruction is execut.d, to distinguish it from
an interrupt. See BREAK description in instruction section in this chapter.

The Decimal flag is set and cleared by software only ~rud is used to force the
processor 1o perform decimal or binary arithmetic. See chapter 4,

The Interrupt flag is used to allow, or disallow, interrupts. 1t is set by power on, or
reset, and can be cleared or set by software. When an interrupt occurs, itis also set
to prevent an interrupt being interrupted until it is ready.

The Zero flag is set toa 1 by an instruction which produces a zero result. If resultis
non-zero, the Z flag is cleared.

The Carry flag is set by instructions which result in the machine preducing a
number greater than 255. Thus, if the accumulator held #FF and 1 was added to
it, the accumulator would now hold #00, and the carry flag would be set. {As an
aside, the Z flag would also be set by such an operation).

The Status register’s main use is to allow the results of one instruction to be tested
by another, so that the program flow can be modified according to the results of
the test.

The stack pointer is the most difficult concept to understand, The usual
explanation is to start by describing what is meant by a stack. This method has at
least a very long tradition behind it, so we wiil stick with it now.

A stack is an area of memory used as a last in, first out store. It is called a stack
because its operation is just the same as a stack of plates in a spring loaded holder
in a canteen. When a plate is put on top of the stack, the spring is compressed a
small amount, and that plate is the only one visible. Thus, the last plate to be puton
the stack is the first one to be removed.

The stack pointer points to the first empty location in an area of memory from
#1FF to #100. Again, due to the nature of the 6 502, the stack is used backwards
with # 1FF being the first location to be used. Whenever a command is executed
which results in a byte being put on to the stack, the 6502 puts that byte into the
location being pointed to by the stack pointer, and then decrements the stack
pointer to be ready for the next byte. When a byte is to be removed, the mechanism
is reversed. The stack pointer is first incremented, and then the byte that it points
to is used.

The location the stack pointer is now pointing to is considered by the system to be
empty, since the contents have been used. However, as you may or may not be
aware, the system only takes a copy of the contents of a location when itreads it, so
the original contents are still there undisturbed until written over by a new
operation. This information can sometimes be helpful to an advanced programmer

99

whois trying to debug a section of machine code which makes extensive use of the
stack. He can frenze the action, so to speak, and then examine the stack’s area of
memoary, to reveal exactly what was put onto the stack and in what order.

You will notice that the stack pointer is only 8 hits long and yet the area of memory
use by the stack is #1FFto #100.Inthe 6502, the leading 1 in these addresses is
tacitly assumed. This has advantages and disadvantages. The advantage is that
everyone knows where the stack is and there is thus no confusion. The
disadvantage is that the stack area cannot be moved and hence itis not possible to
have different stacks for different tasks. In some applications this disadvantage
can be capitalised on, because the stack can be used to pass information between
different parts of a program. in chapter 8 a subroutine called WRITER demonstrates
this very clearly.

The last point to note about the stack is that the pointer will overflow from # 100
back to # 1 FF, without telling the user it has done so. It is unlikely you will write a
program which makes such extensive use of the stack that this will happen, at
least not on purpose, but it can happen by accident. When it does, old data is
corrupted and the program crashes. in layman’s terms, this sort of crash is
equivalent to the machine going away and hiding, because even after recovery,
there is nothing left of the original program worth having. You may be lucky and
have some bits left which look alright but do not rely on them. Reload and start
again.

Writing assembly language programs consists of using these registers in
conjunction with the computer’'s main memory in such a way as to achieve the
desired ends. Memory is usually only used to hold the results of a calculation or
logical operation. It is the registers which are used to do all the real work. There are
some instructions which directly modify memory locations, such as increment,
rotate and so on, but addition, subtraction and compare must all use registers.

6.2 Addressing.

A computer’s memory consists of a number of bytes which are arranged in order.
The processor refers to a required byte by its number. The 6502 processor can
address up to 65536 different memory locations with the minimum address
being O and the maximum 65535. In hexadecimal, these numbers would be
#000 and #FFFF. The processor has no knowledge of RAM, ROM or |/0O devices.
It treats all memory locations identically and it is up to the programmer to ensure
that all goes well. It is possible to tell the processor to write data into ROM, but
clearly such an operation will fail in as much as the data in the ROM will not be
changed. The processor will be unaware of this and will carry on, just as if it had
written to RAM.

We can consider the memory to be a row of terraced houses on one side of the
street and nurmbered sequentially from 0 to 65535. There may be gaps in the row
where no houses have been built and provided the processor is not directed to one
of these, all will be well. The address of each house is its number in the sequence,

100

and for simple programming applications, this method i= sufficient. This addressing
technique is usually referred to as ‘absolute’ addressing because the number used
as the address is directly and absolutely the address of the byte required. It is also
one of the only two modes where the 6502 uses 16 bit addresses in the
instruction. Zero page addresses are a special case of abisolute addresses because
here the address need only be 8 bits fong. To prevent confusion with other
addressing modes a special op-code is used for instructions which reference zero
page. This aliows a two byte instruction to uniquely reference a location directly, so
zero page locations can be accessed very quickly. For this and otherreasons which
will be explained as the remaining addressing modes are described, zero page
locations are of special importance to the programmer.

However, itis desirable to be able to calculate an address or to indirect an address,
for reasons which hopefully will become clear later. We shalf look at what is meant
by these terms and how these methods can be used to speed up certain
programming operations in the following sections.

Before going on to higher things it is worth memtioning the other two humble
addressing modes; 'immediate’ and ‘implied’ addressing.

Immediate addressing means the number to be used is contained in the program
being followed and is, in fact, the very next byte after the instruction. We have
already shown an example of this mode in the program segment labelled START.
When this instruction is obeyed the processor will put the number #80 into the
accumulator because #80 is the byte following the instruction.

Implied addressing is the term used to describe instructions in which the
addresses to be used are already contained in the instruction. For example, the
instruction TYA means transfer the contents of the Y register into the accumulator.
No further information is needed for the processor to execute this.

Indirect Addressing.

This means the address the processor is directed to contains the address of the
byte containing the data required. There is immediately a problem, because a
complete address requires two bytes to hold it, and a single address is only one
byte. For the 6502 it is tacitly understood that indirect addresses are held in two
consecutive bytes and the instruction references the first of them only. Thus, if the
program specifies JMP (#206) (Jump indirect on location #206), it means ‘go to
locations #206 and #207 and string their contents together to form an address
to which you must jump’. In our example, if # 206 held #80 and #207 held #40,
the indirect address to which the processor would jump is #4080. Notice that
again, the address is held in reverse order.

The 6502 is peculiar in that JMP is the only instruction that can use plain
indirection. All other instructions which use indirection have also to index the
address on the X or on the Y registers. Before going into such complications we
had better describe what is meant by indexed addressing.

101

Indexed Addressing.

This is a mode of addressing which adds the contents of either the X or the Y
register to the pritnary address, to form a secondary address, which is then used
by the processor to find the data. For example, a program line might be LDA
#8000, Y (load the accumulator from #8000 +Y)}. This would result in the
processor adding the contents of the Y register to #8000 and then loading the
accumulator from the resulting address. If the Y register contained #4A, the
resulting address would be #804A and the effect of the instruction would be the
same as one which read LDA #804A. However, it is more useful than that
because the same instruction can be used with different values in the Y register.
This means that blocks of memory up to 256 bytes fong can be accessed. For
example:-

LDY #FF
OUTPT LDA #8000

STA #BBA8)Y

DEY

BPL OUTPT

etc.

This short segment would output the locations #80FF to #8000 and put them
into screen memory form #BCA7 to #BBAS8. To do the same thing, using just
absolute addressing, is possible but much more involved.

Exactly the same results are obtained by using the X instead of the Y register, if the
instruction supports both modes. (The LDX instruction can be indexed on Y but
not on X, for example}.

The 6502 has a special case of indexed addressing when the primary address is in
zero page. Using this mode results in a slightly shorter program because the
assembled code is two bytes long instead of three, but there are no other
advantages. Not all instructions can use both registers for indexing. As a general
rule any instruction which references the accumulator can use both, other
instructions can only use the X register. The exceptions are LDX and STX which
can only use the Y register.

To sumup, an indexed address is a primary address to which the contents of the X
or the Y register are added to form a calculated address.

Indexed Indirect Addressing.

The 6502 uses this mode of addressing as the only indirect mode for all
instructions except JMP. There are also two distinct forms of this mode and each
form uses its own index register. The two forms are called post-indexing and pre-
indexing. Both forms require the primary address to be held in two consecutive
bytes in zero page and both add the contents of one of the index registers to form a
final address. They differ in the sequence in which the operations are performed.
We shall look at post indexing first.

102

Consider the case where the locations #80 and #81 contain #80 and #4A
respectively. Treated as an indirect address pair the 6502 would consider these to
string together to form #4A80. If the Y register contained #20 then the
instruction LDA(#80).Y would result in the accumulator being loaded with the
contents of location #4A80+#20=#4AA0. The contents of the Y register have
been added to the address after it has been concatenated.

For pre-indexed addressing, let us keep the numbers the same but this time the X
register contains # 20 and the instruction looks slightly diferrent: LDA{#80,X). In
this case the address is found by counting from location #80 by #20 to reach
location #A0. The indirect address is then contained in locations #A0 and #A1.
This addressing method is used when a table of addresses is set up in zero page
and it is required to access an address in that table. Notice that the X register must
be incremented or decremented twice to move the effective address along the
table because each indirect address occupies 2 bytes.

The final point to note about both these methods is that they give the same indirect
address when the index registers both contain zero. Thus, if an indirect address
has been calculated and stored in zero page, in reversed order, either addressing
mode may be used as long as the X or Y register used is first set to zero.

Of the two addressing modes, the post indexed mode is used much more often
than pre-indexed, for non zero index registers. In fact, although the author has
written, and debugged, several K of assembly language for the 6502 for various
purposes, the pre-indexed addressing mode has never yet been used except with
a zero X register.

The reasoning behind the way these addressing modes are impltemented is to try
to keep all addresses used to 8 bits only. Because of this constraint, all indirect
addresses have to be indirected through zero page to prevent ambiguity. The
exception to this rule, JMP indirect, is allowed to have 16 bits in its address field
and it can therefore be indirected through any pair of locations.

6.3 Stack Operations.

The comparison of the stack to the canteen plate holder/dispenser has already
been made and we will now look at how the 6502 makes use of the stack and the
uses the programmer can put it to.

There are a number of instructions which push bytes onto the stack or which pull
bytes off it. For example, PHA pushes a copy of the accumulator on to the stack,
PLA pulls a byte off the stack and puts it into the accumulator. PHP pushes the
status register onto the stack, PLP pulls a byte off the stack and puts it into the
status register. Notice the careful wording in the descriptions just given. The
6502 does not know what was pushed onto the stack when it is performing pull
operations. Thus the code PHP; PLA would result in a copy of the status register
being pushed onto the stack and that copy being pulled off and out into the
accumulator. These two instructions together have resulted in a transfer of status
register to accumulator which cannot be done by a single instruction.

103

It is good programming practice, when entering a subroutine, to save the current
registers of the processor so that vital information is not lost. It is practically
mandatory to do exactly the same on entering an interrupt routine because the
programmer does not know where the processor will be in the main program
when the interrupt occurs. If, for example, the main program had just loaded the
accumulator with a value when the interrupt occurred and the interrupt routine
also used the agcumulator, then if the contents of the accumulator are not saved
before the interrupt routine changes them, the main program will have lost its data.

The most common method of saving registers, in both subroutines and interrupt
routines, is to use the stack. In some cases zero page memory is used but as zero
page locations have such a high premium on their use, this is not recommended as
normal procedure.

On entry to either routine, the following section of code could be used:-

FHA
TYA
PHA
TXA
PHA

This saves the accumulator, X and Y registers. It may also be necessary to save the
status register when entering a subroutine because some programs use the Carry
flag to pass binary information between program segments and the subroutine
called may corrupt the status register. in the case of interrupts the status register
is saved anyway by the system.

On leaving the subroutine, the registers must be unstacked in exactly the reverse
order or a transfer between registers will result.

PLA
TAX
PLA
TAY
PLA
RTS or RTI

and the original situation before the subroutine is restored.

Theinstruction JSR (jump to subroutine) itself makes use of the stack and this will
be described next.

JSR and RTS.
Subroutines are used in Assembly language for exactly the same reasons as in
BASIC. They are calied by the instruction JSR <label> where <label> represents

an address. Subroutines must end with RTS (Return From Subroutine), which
sends the processor back to the instruction following the JSR <label.>

104

When the instruction is executed, the current program counter is pushed onto the
stack before the address represented by the label is substituted. This results in the
return address (now on the stack) being one less than the correct return address.
This state of affairs is unique to the 6502 and it comes about as follows:-

Normal program execution takes the form of fetching an instruction, incrementing
the program counter, decoding the instruction and executing it. When JSRis met,
the same format is followed. However, JSR must be a 3 byte instruction because
the subroutine’s address must be 16 bit. The processor attempts to correct this by
incrementing the program counter, before pushing it onto the stack. To fully
correct it, it should increment it twice, and this it does not do. Consider the code
line shown:-

| JSR 14801001

balo lc)

When first encountered, the program counter is pointing to byte ‘a’. This byte is
fetched and the program counter is incremented te point to 'b’. On decoding the
instruction, the program counter is incremented and pushed onto the stack
(taking up two bytes). However, it is still only pointing to 'c’ instead of to the next
instruction. To correct this, the RTS instruction adds one to the program counter
after pulling it off the stack and before substituting it for the old one.

It may seem to be a useless piece of information since the system does in fact get it
right in the end. However, when debugging programs by examining the stack, it
has to be remembered that the return addresses on the stack are one short of the
actual arrival addresses. Also, some clever program segments use the stack to
force a return to a different address to that expected, and to do this, it has to be
known that the address required must be decremented before being pushed onto
the stack. For example:-

LDA @#80
PHA
LDA @#A4
PHA
RTS

If executed, this would result in the processor returning to #804B, not #804A,

The subroutine WRITER demonstrates this technique in a practical way. (See
chapter 8.4)

Interrupt and RTI

Itis a cold winter's night, and you are sitting by the fire reading a good book. Just
when the master detective is about to reveal all, there is a tap on your shoulder and
a voice says, "Excuse me, but could you spare a minute?” “Yes, of course” you
reply, marking your place in the book. “What can | do for you?".

You have just been interrupted while enjoying yourself having a quiet read. You

1056

now have to g off and mow the lawn, wash the dishes or fetch someone from the
ratlway station YWhen you come back after completing whatever mission you have
been given, you pick up the book and start reading again where you left off. (You
may be wondnring about having to mow the lawn on a cold winter's night, and for
the record, so e we).

The preceding drscription is more or less what happens when you are interrupted
in the middle «f one task so that you can be made to perform some other task
which is considz1 ed to be more important than the one you were engaged in. You
may take issue nn the subject of priorities, but since you have no control over them,
this is largely irrelevant. A computer can be interrupted in exactly the same sort of
way, except that an electronic equivalent of a tap on the shoulder has to be used,
and it will also roturn to its original task exactly where it left off,

The 6502 processor has a special input pin which is used to interrupt it. This input
pin must normally be held at a high voltage level (+2.4 to +5.0v} and when it is
desired to interrupt the processor, this pin must be pulled to low voltage leve! (0.0
to 0.6v). When this happens, the processor will complete any instruction that it is
in the middle of and then save its current program counter and status registeron to
the stack. This reruires three stack operations because the program counter is 2
bytes long. The processor now loads a new program counter from locations
#FFFE and #FFFF and starts operating the program from the address thus
formed. The addross is stored in reverse order, the usual thing for the 6502, with
the low address in #FFFE and the high in #FFFF. If, forexample, #FFFE held #20
and #FFFF held #80, the interrupt routine would then start at #8020.

At the end of the interrupt routine the instruction RTI (Return from interrupt}
instructs the processor to reload the old status register and program counter from
the stack and carry on as before. If this is to work properly, any stack operations
performed during the interrupt routine must exactly balance, so that when the
instruction RTlis reached the stack is in the same state as it was when the routine
was entered. Should the stack have been pushed more often than it had been
pulled, or vice-versa, the result will be disastrous.

The facility to interrupt the processor is a very powerful tool in optimising the use
made of the processor, particularly when driving slow peripheral devices. If the
computer is driving a printer, for example, which can print at say 200 characters
per second, then the processor would spend most of its time waiting for the
printer, To prevent this, a printer buffer is arranged in the computer's memory and
the computer sends the first character in the buffer to the printer, then goes back
to whatever processing tasks it has to do. When the printer has finished with that
first character it interrupts the computer, which then sends it the next character
and so on. The benefits of this scheme are plain to see. The computer only sends
characters to the printer when the latter is ready to receive them and the rest of the
time is spent in performing other more important tasks. The disadvantage of the
system is that a chunk of memory has to be set on one side as a printer buffer, but
with the price of memory being what it is, and still falling, this is not much of a
disadvantage.

106

From the programmer’s point of view, all that he- sl has to remenihar is that the
interrupt routine is ‘'voctored' through locations #FFEE and 21 FFF 2 the 6RO
uses the stack to storeits statas and returm aaddvess 1 sheanost ol sure there
13 space on the stack to store this information, o ! e minst tale core not to
interfere with it during the interrupt routine, or a sy~ crash will result.

The RTI instruction has an implied address, since svoryone knoves where the
return address is to be found even though it is not pessible to knewve what that
address is. (Not possible as far as the processor is concerned before the event).

Branching.

All the instructions we have met so far which change the program counter (JMP:
JSR: RTS: RT1) do so unconditionally. That is to say, the instructions JMP<label>
will always be executed and will always result in the next instruction to be
executed being the one at <label>. This next group of instructions may be
executed or they may not depending on the conditions which prevail at the time.
The conditions which determine whether or not an instruction will be executed are
contained in the status register. As previously described the register contains a
number of flags, some or all of which may be affected by certaininstructions. If this
all sounds a bit vague, do not be disheartened. All will shortly become clear and
always remember that computers were designed hy human beings and must
therefore be relatively easy.

To illustrate the above paragraph, et us look at the instruction LDA in some detail.
This tells the processor to load the accumulator and the data to use is defined in the
rest of the instruction. Thus, LDA # means 'load immediate’. LDA #8000 means
‘load from absolute address #8000’ and so on through all the addressing modes
supported by this instruction. All these slightly different versions of the same
instruction have one thing in common. They all affect the same flags in the status
register. In the case of LDA the fiags affected are the N flag and the Z flag. This
means, if the value loaded into the accumulator, regardless of where it came from,
is zero, then the Z flag will be set and the N flag will be cleared bocause zeroisnota
negative number. If a positive number is loaded, the Z and N flags will both be
cleared. If a negative numberis loaded, the N flag will he setand the Z flag cleared.
This instruction will not affect the status of any of the other flags.

Now, having used this instruction to load the accumulator we can use ane or more
of the branching instructions to direct the processor to different parts of the
program depending on the vaiue loaded. The processor can be made to branch on
the carry flag being clear, (BCC); the carry flag being set (BCS); the zero flag being
set (BEQ); the zero flag being clear {(BNE); the negative flag being set (BMI): the
negative flag being clear {BPL); the overflow flag being set {BVS); the overflow flag
being clear (BVC).

Clearly, in the case of LDA, the only branching instiuctions which are relevant are
BEQ, BNE, BPL and BMI. if another branch instruction is used, it will be acting on
the status flag set by a previous instruction. Note that this is sometimes good
programming practice since it allows acommon instruction to be executed before

107

the branching takes place. (To explain this further: if whether a branch took place
or not, the accumuiator had to be loaded from a certain location, and loading the
accumulator did not affect the status flag to be tested, then it makes sense to load
the accumulator first, and then branch).

Branching instru<tions can only send the processor forward through the program
by 128 bytes anl backwards by 127 bytes. The reason for this is that the top bit of
the argument to the branch instruction is used as a sign bitin exactly the same way
as described in the chapter on binary arithmetic.

Let us look at a couple of examples of Assembly language to illustrate these
instructions. One example has been used already, but it will bear repetition.

LDY @#FF
OUTPT LDA #8000Y

STA #BBAS8Y

DEY

BNE OUTPT

etc.

The first instruction loads the Y register with #FF (255 decimal). The second
instruction is labelled with OUTPT and it loads the accumulator from #8000
indexed on Y. The third instruction stores the contents of the accumulator at
#BBAS8 indexed on Y. The fourth decrements Y and the fifth branches back to the
label OUTPT if the zero flag in the status register is clear. The instruction DEY
affects the negative and zero flags in the status register. Therefore this short
program will continue looping through from the label to the branch and back again
until the Y register reaches zero.

Example 2:-

ComP LDA (#F2),Y
AND @#DF
CMP LABEL X
BNE NOTME
INY
INX
CPX @3.
BCC COMP
BCS MEE

This is slightly longer and contains a number of possible branches. It also
demonstrates the comparison instruction. The first instruction, labelled COMP,
loads the accumulator from location #F 2 indexed on the Y register, so presumably
the Y register has been set to some known value {probably zero) already. The next
instruction strips out one of the bits and the third compares the result with the byte
contained in LABEL indexed on X. Again, the X register must have been set to a
known value previously and that value was also probably zero. The compare
instruction affects the negative, zero and carry flags so the branch will take place if

108

the zero flag is clear, Assuming the program does not branch at this point, the X
and Y registers are both incremented and the X registet is then comparnd 10 3. The
way the 6502 performs such a comparison is worth detailing here. Firstly, it sets
the carry flag. Then it subtracts the 3 {or other number as used in tha program)
from the register being compared and sets or clears the status flags according to
the result. However, the resultis not stored and the contents of the register are not
altered. If, in this case, the 3 is greater than the X register, the carry flag will be
cleared and the negative flag set. If the 3 is equal to the X register, the carry flag will
remain set and the zero flag will be set because the result of the subtraction was
zero. If the 3 is less than the X register, the carry flag will be set and the other two
flags will be cleared. All comparisons are between 1egisters and some other
location and all behave in the manner just described.

Thus, in the program we are looking at, if the X register is loss than 3, the program
will branch back to COMP. If the X register is equal to or greater than 3, it will
branch to MEE, wherever that is.

This program illustrates one final point about branching. The last branch was not
BEQ, which would work just as well as BCS most of the time, but used BCS on
purpose. The reasonis perhaps a little difficuit to understand. Suppose we assume
the existence of gremlins or other such creatures which can inhabit the insides of
computers and like machinery. These gremlins can change the value of a bitin the
memory at random time intervals, using methods of their own. { you find out how
they do it, write a book about it and make a fortune). Some of these methods are
known and are almost as hard to believe as gremliins. For example, the case of
some memory chips is made of plastic. This plastic has some tarry compounds in
its make-up to render it light-proof. The tarry compounds contain a small amount
of radio-active material, which was discovered by Mme Curie. This material decays
slowly and sometimes an emitted particle hits a memory cell and a bit is lost or
gained at random. Other gremlins are probably due to interference on the mains
supply to the computer. A good programmer takes care to prevent his/her
program from crashing due to such an unlikely event. The way this is done is to
ensure that branch instrlictions will always eventually happen even if they do not
at the first attempt. Going back to our example, suppose it read:-

CPX @3
BCC COMP
BEQ MEE

Now if a gremlin strikes and the X register is effectively incremented iwice and not
just once at the critical time, neither branch will take place even though one of
them should. Change the last instruction to BCS and it will take place eventually.
This caters for the processor going round the foop more times than intended,
regardless of whether the extra trips are due to outside interference or to bad
programming.

109

6.4 The 6502 Instruction Set.

All machines are built with alimiton their capabilities. Cars can only be driven, with
any continuing success, on roads specially built for the purpose. Similarly, micro-
processors can only be made to do certain things. The limits of achievement of a
micro-processor are defined by its instruction set. This is simply a collection of the
various commands which the processor can obey. in this section we shali look at
each instruction in turn and briefly describe its action and the addressing modes
which can be used with it. This is not really a section to be read as you mightread a
novel or maybe even parts of this book, but rather should be used as a reference
section for when writing assembly language programs, to make sure you
understand the full implications of each instruction as you use it.

Firstly, it would be helpful to describe the normal conventions used by most 6502
assemblers. We shall ook only at those covering addressing modes because the
facilities available on different assemblers are all accessed by different methods
and to try to describe them all would take another book.

immediate Addressing.

This is usually denoted by '# or *@". In what follows we shall use ‘@’. Example
LDA @7 would load the accumulator with 7.

Zero Page Addressing.

The argument is a single byte. it may or may not be a hexadecimal number.
Example LDA 100: LDA #64. Both these instructions result in the same number
in the accumulator,

Hexadecimal Motation.

The “#' sign is used by the ORIC and we shall continue with this convention.
Absolute Addressing.

The argument is a double byte expressed in normal order. Example STA 6400:
STA #8000.

Absolute Addressing indexed on X or Y registers.

The argument is a double byte, followed by a comma and the register used.
Example STA #7C00.X.

Indirect Addressing.
The two forms available make different use of brackets to differentiate between
them. The argument is a single byte since all indirect addresses {except JMP) are

through zero page. Example LDA(#80),Y post indexing. LDA (#80,X). pre
indexing.

110

JMP also uses brackets, but it cannot ho indexed. JMP (#207).
Accumulator.
The arqument is a single ‘A’. When this is used the instruction only affects the

accumulator. Example ROL A. Meaning rotate left the accumulator by one
position.

The Actual Instruction Set.

For each instruction, we give the mnemonic, a description, the addressing modes
and status register.

Add with carry. Mnemonic:ADC

Add the contents of the memory specified to the accumuiator along with the catry
bit. The resuit of the addition is put in the accumulator.
Examples:- ADC @7 add 7 to accumulator

ADC #80 add contents of iocation #80.

Addressing modes avatlable:-

Absolute 6D
Accumulator --
Absolute, X 7D
AbsoluteY 79
Immediate 69
Implied -
indirect -
Zero page 65
Zera page, X 75
Zero page,Y --
(Indirect,X) 61
(Indirect).Y 71
Relative -~

Status Register N V B Dt 2 C
* * * *

Logical AND. Mnemonic:AND

Carry out the logical AND of the accumuilator and the
specified memory location. The accumulator will hold the
result.

Examples:- AN @55
AND #60

Addressing modes available:-

Absotute 2D
Accumulator -
Absolute X 3D
AbsoluteY 39
immediate 29
Implied --
Indirect -
Zero page 25
Zero page X 35
Zero pageY --
{tndirect,X) 21
{(Indirect}.Y 31
Relative -

Status Register ! V B D 1 Z2 C
¥ *

Arithmetic shift left. Mnemonic: ASL

Shift the contents of the specified location to the left by one
bit position. Bit 7 moves into the Carry bit in the status
register, and a zero is moved into bit O

Example:- ASL A shift accumulator
ASL #60 shift zero page

Addressing modes available:-

Absolute OE
Accumulator 0A
Absolute X 1E
Absolute Y -
Immediate -
Implied -
Indirect -
Zero page 06
Zero page, X 16

Zero pageY -

112

{Indirect,X) -
(Indirect),Y --
Relative -

Status Register N V B D | Z C
* * *

Branch carry clear. Mnemonic BCC

If the carry flag is zero, branch to the indicated address. The
address must lie within the range +127 bytes and -128
bytes. Normal assemblers allow branching to a label and do
all the binary arithmetic.

Example:- BCC NEXT
Addressing modes available:-

Absolute --
Accumulator -

Absolute, X

Absolute,Y

Immediate --
Implied --
Indirect -
Zero page --
Zero page,X -~
Zero page,Y --
(Indirect,X) -
(Indirect),Y -
Relative 90

Status Register N V B D | Z C

Branch carry set. Mnemonic:BCS
If the carry flag is 1, branch to the indicated address. Otherwise same as BCC.

Addressing modes available:-

113

Absolute --
Accumulator --
Absolute, X -
AbsoluteY -~
Immediate -
Implied -
Indirect -
Zero page -
Zero page, X -~
Zero page,Y -
{(indirect, X} --
(Indirect).Y -~
Relative BO

Status Register N VB DI Z C

Branch if zero. Mnemonic: BEQ

if the zero flag is 1, branch to the indicated address.
Otherwise same as BCC.

Addressing modes available:-

Absolute -
Accumulator -
Absolute X -
Absolute,Y -
Immediate -
Implied -
Indirect -
Zero page --
Zero page X -
Zero pageY -
(Indirect, X} -
(Indirect),Y --
Relative FO

Status Register N VB D1 Z C

Compare memory bits with accumulator.
Mnemonic: BIT

The accumulator and the memory location are logically
ANDed together. If they are equal, the Z flag is set, reset
otherwise. Also the top two bits of the memory location are
put into the V and N bits of the status register respectively.
Thus, if location had bit 7=1 and bit 6=0, the status register
will have bit N=1 and bit V=0.

Addressing modes available:-

Absolute 2C
Accumulator --
Absolute, X --
Absolute,Y -
Immediate -
Implied --
Indirect : -
Zero page 24
Zero page X -~
Zero page,Y --
{Indirect,X) -
(Indirect),Y -~
Relative --

Status Register N V B D 1 2 C
M7 M6 *

Branch on minus. Mnemonic: BMI

if the N flag is set, branch to the indicated address.
Othewrwise same as BCC.

Addressing modes available:-

Absolute --
Accumulator .-
Absolute, X --
Absolute,Y --
Immediate -
Implied --
Indirect -~
Zero page --
Zero page, X --
Zero page,Y --

{Indirect,X} -
(indirect),Y -
Relative . 30

Status Register N V B D 1 Z C

Branch on non-zero. Mnemonic: BNE

If the Z flag is O, branch to the indicated address. Otherwise
same as BCC.

Addressing modes available:-

Absolute -
Accumulator --
Absolute X -
AbsoluteY -
Iimmediate -~
Implied -
Indirect -
Zero page -
Zero page,X --
Zero page,Y --
(Indirect,X) --
{Indirect).Y -
Relative DO

Status Register N V B D | Z2 C

Branch on plus. Mnemonic: BPL

If the N flag is reset (=0}, branch to the indicated address.
Otherwise same as BCC.

Addressing modes available:-

Absolute --
Accumulator -
Absolute X -
Absolute,Y --
Immediate -
Implied -

116

Indirect --
Zero page -
Zero page, X -
Zero page,Y --
{(indirect,X) -
(Indirect),Y --
Relative 10

Status Register N V B D1 Z C

Break. Mnemonic: BRK

Software interrupt. Current program counter+2 and status
register are pushed onto the stack. The program then vectors
through locations #FFFE abd #FFFF just as for a normal
interrupt. However, the B flag in the status register is set
before it is pushed. Notice that the program counter+2 is
pushed onto the stack. It may be that this results in the
program counter not pointing to the next instruction, in
which case action will have to be taken. [t is normal practice
to follow BRK by a null instruction, NOP to allow for this.

Addressing modes available:-

Absolute --
Accumulator --
Absolute, X -
Absolute Y -
Immediate --
Implied 00
Indirect -
Zero page -
Zero page, X -
Zero page,Y -~
(Indirect,X) --
(Indirect),Y -
Relative -

Status Register N V B D1 Z C
*

Branch on overflow clear. Mnemonic: BVC

if overflow flag is clear, branch to the indicated address.
Otherwise same as BCC.

Addressing modes available:-

Absolute -
Accumulator -
Absolute, X -
AbsoluteY -
Immediate --
Implied -
Indirect -
Zero page -
Zero page,X -
Zero page,Y -
{Indirect, X} -
(Indirect).Y --
Relative 50

Status Register N VB D1 Z C

Branch on overflow set. Mnemonic: BVS

if the overfiow flag is set, branch to the indicated address.
Otherwise same as BCC.

Addressing modes available:-

Absolute --
Accumulator --
Absolute, X -~
Absolute,Y --
Immediate -
Implied -
indirect -
Zero page -
Zero page, X -
Zero pageY -
{Indirect,X) -
{Indirect),Y -
Relative 70

118

Status Register N V B D 1 Z C

Clear carry. Mnemonic: CLC

Reset the carry flag to zero. It may have been zero already, but
so what? clear it anyway. This is necessary before using ADC
to prevent spurious addition of left over carry bits.

Addressing modes available:-

Absolute -
Accumulator -
Absolute, X -
Absolute,Y -
Immediate --
implied 18
Indirect --
Zero page --
Zero page, X -~
Zero page,Y --
(Indirect,X) --
(Indirect),Y -
Relative -

Status Register N VB D | Z C
*

Clear decimal flag. Mnemonic: CLD

Reset the decimal flag to zero. Any arithmetical instructions will now use the
binary system,

Addressing modes available:-

Absolute -~
Accumulator -
Absolute, X -
Absolute,Y -~
Immediate -
implied D8
Indirect -

119

Zero page -
Zero page X -
Zero page,Y --
{Indirect, X} --
(Indirect),Y -
Relative -

Status Register N V B 9 1ZC

Clear interrupt bit. Mnemonic: CLI

Reset interrupt bit to zero, thereby enabling interrupts. At power on or reset, the
interrupt bit will always be set, thus disabling interrupts until the programmer is
ready for them.

Addressing modes available:-

Absolute -
Accumulator -
Absolute, X -
Absolute,Y --
Immediate --
tmplied 58
indirect -
Zero page --
Zero page, X --
Zero page,Y --
(Indirect,X) --
(Indirect},Y -
Relative -

Status Register N V B D {1 Z C
*

Clear overflow flag. Mnemonic: CLV

Reset overflow flag to zero. What else can one say?

120

Addressing modes available:-

Absolute -
Accumulator .-
Absolute, X -~
AbsoluteY -
Immediate -
Implied B8
Indirect -
Zero page -
Zero page.X -
Zero page Y -
(Indirect,X) --
(Indirect),Y --
Relative --

Status Register N V B D | Z C
*

Compare. Mnemonic: CMP

The effect is to subtract the location specified from the accumulator and to modify
the status register according to the resuit. No memory locations or registers are
actually changed and the resuit is not stored. if the two quantities are equal, the Z
flag is set, reset otherwise. If the memory location is greater than the accumulator,
the carry flag is cleared. if the location is less than or equal to the accumulator, the
carry flag is set. The N flag is set or cleared by the sign bit of the resuit.

Addressing modes available:-

Absolute CD
Accumulator --
Absolute, X DD
Absolute,Y Do
Immediate C9
implied -~
Indirect -
Zero page C5
Zero page, X D5
Zero page,Y -
(Indirect, X} C1
(Indirect),Y D1
Relative --

121

Status Register N VB D1 Z C
* * *

Compare to X. Mnemonic: CPX
The X register is used instead of the accumulator.
Addressing modes available:-

Absolute EC
Accumulator -
Absolute, X --
AbsoluteY -
Immediate EO
{mplied -
Indirect --
Zero page E4
Zero page, X --
Zero page,Y -
(Indirect,X) -
{Indirect),Y -
Relative --

Status Register N V B D | Z C
* * *

Compare to Y. Mnemonic: CPY
This is the same as CMP except that the Y register is used.
Addressing modes available:-

Absolute cC
Accumulator --
Absolute X -
AbsoluteY -
Immediate Cco
Implied -
Indirect -
Zero page C4
Zero page,X -
Zero page,Y --

122

{indirect, X) -
(Indirect)Y -
Relative -

Status Register N V B D | Z C
* * *

Decrement. Mnemonic: DEC

The memory iocation specified has its contents reduced by one. If the location
contained zero, after decrementing it would contain #FF.

Addressing modes available:-

Absolute CE
Accumulator --
Absolute, X DE
Absoiute,Y -
Immediate --
Implied --
Indirect -
Zero page C6
Zero page, X D6
Zero page,Y -
(Indirect, X} -
(Indirect).Y -
Relative -

Status Register N V B D | Z C
*

Decrement X. Mnemonic: DEX
The contents of the X register are reduced by one. Same as DEC.

Addressing modes available:-

Absolute .-
Accumulator -
Absolute, X -
AbsoluteY -~

123

Immediate -
Implied CA
Indirect .-
Zero page --
Zero page,X -
Zero page,Y -
(Indirect, X} ~-
(Indirect),Y -
Relative -

Status Register N VB D | Z C
* *

Decrement . Mnemonic: DEY
The same as DEX but affects the Y register.

Addressing modes available:-

Absolute -
Accumulator -
Absolute, X --
Absolute,Y --
immediate --
Implied 88
Indirect - -
Zero page -
Zero page, X .-
Zero page,Y --
(Indirect,X) --
{indirect),Y -
Relative -

Status Register N VB D | Z C
* *

Exclusive or. Mnemonic: EOR

The memory location and the accumulator are Exclusive-ored together. The result
is best demonstrated by a truth table:-

124

memory Acc. Result

- Q=0
- Q00
OC==0

The truth table is applied to the corresponding bits of the location and the
accumulator, and the result ends up in the accumulator. Example, if memory
location contained #55, the accumulator #27, the result of E-oring them would
be #72

Addressing modes available:-

Absolute 4D
Accumulator --
Absolute, X 5D
Absolute,Y 59
Immediate 49
Implied -
indirect --
Zero page 45
Zero page,X 55
Zero pageY -~
(Indirect.X) 41
{Indirect),Y 51
Relative -

Status Register N V B D | % C
*

Increment. Mnemonic: INC
Opposite to decrement.

125

Addressing modes available:-

Absolute
Accumulator
Absolute, X
Absolute,Y
Immediate
Implied
Indirect
Zero page
Zero page,X
Zero page,Y
(Indirect,X)
(indirect),Y
Relative

Status Register N V B D | % C
*

Increment X. Mnemonic: INX

Opposite to DEX.

Addressing modes available:-

Absolute
Accumulator
Absolute, X
AbsoluteY
Immediate
Implied
Indirect
Zero page
Zero page,X
Zero page,Y
{Indirect,X)
{Indirect),Y
Relative

Status Register N V B DI Z C
* »

126

IncrementY Mnemonic: INY
Opposite to DEY.
Addressing modes available:-

Absolute -
Accumulator -
Absolute, X --
AbsoluteY --
Immediate --
Implied c8
Indirect -
Zero page -
Zero page, X --
Zero page,Y -
(Indirect,X) -
(Indirect),Y -
Relative --

tatus Register N VB DI Z C
* *

Jump to address. Mnemonic: JMP
Put address specified into the program counter.

Addressing modes available:-

Absolute 4C
Accumulator -
Absolute, X --
Absolute,Y -
Immediate -
Implied -
Indirect 6C
Zero page --
Zero page. X -
Zero page,Y -
{Indirect,X) -
(Iindirect),Y --
Relative -

127

Status Register N VB D | Z C

Jump to subroutine. Mnemonic: JSR

The contents of the program counter+2 are saved on the stack, and the new
address is loaded into the program counter. Program execution will now take place
as from the new address.

Addressing modes available:-

Absolute 20
Accumulator -
Absolute, X -
Absolute,Y --
Immediate --
Implied --
Indirect --
Zero page -
Zero page,X -
Zero page,Y -
{Indirect,X) --
{(indirect),Y -
. Relative --

Status Register N V B D | Z C

Load accumulator. Mnemonic: LDA
The accumulator is loaded from the specified address.

Addressing modes available:-

Absolute AD
Accumulator -
Absolute X BD
AbsoluteY B9
Iimmediate A9
Implied --
Indirect -
Zero page Ab
Zero page, X BS
Zero page,Y -

128

(Indirect,X) At
(Indirect),Y B1
Relative -

Status Register N V B D | Z C
* *

Load X register. Mnemonic: LDX
Load the X register from memory.

Addressing modes available:-

Absolute AE
Accumulator .
Absolute X --
Absolute,Y BE
Immediate A2
Implied -
Indirect -
Zero page A6
Zero page X --
Zero page,Y B6
(Indirect, X} -~
(Indirect),Y -~
Relative --

Status Register N V B D | Z C
* *

Load Y register. Mnemonic: LDY
Load Y register from memory.

Addressing modes available:-

Absolute AC
Accumulator -
Absolute, X BC
Absolute,Y -
Immediate AQ

129

Imptied -
indirect -~
Zero page A4
Zero page X B4
Zero page,Y -
(indirect,X) -
(Indirect),Y --
Relative -~

Status Register N VB D 1 2 C
* *

Logical shift right. Mnemonic: LSR

Shift the specified location right by one bit position. Bit 7 will become a zero. The
least significant bit (bit O) is transferred to the carry bit.

Addressing modes available:-

Absolute 4E
Accumutlator 4A
Absolute, X 5E
Absolute,Y --
Immediate -
Implied --
Indirect -
Zero page 46
Zero page,X 56
Zero page,Y -~
(Indirect,X) -
(Indirect),Y -
Relative -

Status Register N V B D1 2 C
0 * *

No operation. Mnemonic: NOP

Do nothing for 2 clock cycles. Can be useful as a time delay or as a place where a
patch can be inserted later.

130

Addressing modes available:-

Absolute -
Accumulator --
Absolute, X --
AbsoluteY .-
immediate -~
Implied EA
Indirect -~
Zero page -
Zero page X -
Zero page,Y -
(Indirect,X) --
(Indirect).Y --
Relative -~

Status Register N V B D 1 Z C

Or memory with accumulator. Mnemonic: ORA
Logical OR of memory with accumulator. The resuit is stored in the accumulator.

Addressing modes available:-

Absolute oD
Accumulator -
Absolute, X 1D
Absolute,Y 19
Immediate 09
Implied --
Indirect -
Zero page 05
Zero page X 15
Zero pageY -
(Indirect,X) 01
(Indirect).Y 11
Relative --

Status Register N VB D | Z C
* *

131

Push A. Mnemonic: PHA
A copy of the accumulator is pushed onto the stack.
Addressing modes available:-

Absolute -
Accumulator -
Absolute, X --
AbsoluteY -
Immediate -
Implied 48
Indirect -
Zero page --
Zero page, X -
Zero page,Y -
{Indirect, X} -
{Indirect},Y -
Relative -

Status Register N V B D | Z C

Push status. Mnemonic: PHP
A copy of the status register is pushed onto the stack.
Addressing modes available:-

Absolute -
Accumulator --
Absolute, X -
Absolute,Y --
Immediate --
Implied 08
indirect -
Zero page --
Zero page, X --
Zero pageY --
(Indirect, X) --
(Indirect),Y -
Relative -

Status Register N VB D |1 Z C

132

Pull accumulator. Mnemonic: PLA
The next byte is pulled off the stack and put into the accumulator.

Addressing modes available:-

Absolute --
Accumulator -
Absolute, X --
Absolute,Y -
Immediate -
Implied 68
Indirect -
Zero page -
Zero page --
Zero page,Y --
{Indirect,X) -
(Indirect).Y --
Relative -

Status Register N V B D | Z C
* *

Pull status. Mnemonic: PLP
The next byte is pulled off the stack and put into the status register.
Addressing modes available:-

Absolute -
Accumulator -
Absolute, X -
Absolute,Y --
Immediate -~
Implied 28
Indirect --
Zero page --
Zero page,X -
Zero page,Y -~
{Indirect,X) --

133

{Indirect),Y --
Relative -

Status Register N V B D} Z C
* * * * x ¥

}
*

Rotate left. Mnemonic: ROL

The contents of the speciified address are rotated to the left by one bit position.
The carry bit is used to fill bit O. Bit 7 goes into the carry bit.

Addressing modes available:-

Absolute 2E
Accumulator 2A
Absolute, X 3E
AbsoluteY -
immediate --
Implied -
Indirect -
Zero page 26
Zero page, X 36
Zero page.Y -
(Indirect,X) -
(indirect),Y --
Relative -

Status Register N VB DI Z C
* *x &

Rotate right. Mnemonic: ROR

The contents of the specified memory location are rotated right by one bit position.
The carry bit goes into bit 7 and bit O goes into the carry bit.

Addressing modes available:-

Absolute 6E
Accumulator 6A
Absolute, X 7E
Absolute,Y -

134

Immediate -
Implied -
Indirect --
Zero page 66
Zero page,X 76
Zero page,Y -
(Indirect, X} -
(Indirect)Y -
Relative .-

Status Register N V B D | Z C
* *x ¥

Return from interrupt. Mnemonic: RTI

Restore the program counter and the status register from the stack and adjust the
stack pointer accordingly.

Addressing modes available:-

Absolute --
Accumulator --
Absolute, X .
Absolute,Y .
Immediate -
implied 40
Indirect -
Zero page -
Zero page, X -
Zero page,Y .
(Indirect,X) -
(fndirect),Y -
Relative -

Status Register N V B D
* * * X

zZC
* *

|
*

Return from subroutine. Mnemonic: RTS

Remove the program counter from the stack, add 1 to it and putitinto the program
counter. Adjust the stack pointer accordingly.

135

Addressing modes available:-

Absolute --
Accumulator -
Absolute, X -
AbsoluteY --
Immediate --
fmplied 60
Indirect --
Zero page -
Zero page X --
Zero page,Y -
(Indirect X} -
(Indirect).Y -
Relative --

Status Register N V B D | Z C

Subtract with ‘borrow. Mnemonic: SBC

Subtract from the accumulator the contents of the address specified and the
inverse of the carry flag. The result is left in the accumulator. (The inverse of the
carry flag is the borrow).

Addressing modes available:-

Absolute ED

Accumulator -
Absolute, X FD
AbsoluteY F9
Immediate E9
Implied -
Indirect -
Zero page E5
Zero page,X F5
Zero page,Y -
{Indirect,X) E1
(Indirect.Y) F1
Relative -

Status Register N VB DI Z C
* X * x

136

Set carry flag. Mnemonic: SEC
Set the carry flag to one.

Addressing modes available:-

Absolute --
Accumulator --
Absolute, X --
Absolute,Y --
Immediate -~
Implied 38
Indirect -~
Zero page --
Zero page.X -
Zero page.Y -
(Indirect,X) -
(Indirect).Y -
Relative -

Status Register N V B D | Z C
L 3

Set decimal mode. Mnemonic: SED
Set the decimal mode flag in the status register.
Addressing modes available:-

Absolute --
Accumulator -~
Absolute, X -
Absolute,Y --
Immediate --
Implied F8
Indirect --
Zero page --
Zero page X --
Zero pageY -
(Indirect,X) -
{Indirect).Y -~
Relative -

137

Status Register N V B DI Z C
*

Set interrupt disable. Mnemonic: SEI
Set the interrupt flag in the status register to 1 to disable interrupts.
Addressing modes available:-

Absolute --
Accumulator --
Absolute, X --
Absolute,Y -
Immediate --
implied 78
Indirect -
Zero page --
Zero page X --
Zero page,Y -
(Indirect.X) --
(Indirect),Y --
Relative -

Status Register N V B DI Z C
*

Store accumulator. Mnemonic: STA
Store a copy of the contents of the accumulator in the specified location.

Addressing modes available:-

Absolute 8Dh
Accumulator -
Absolute, X aD
Absolute,Y 99
Immediate -
Implied -
Indirect -
Zero page 85
Zero page, X 95
Zero page.Y -

138

(Indirect,X) 81
(Indirect),Y 91
Relative -

Status Register N VB D [Z C

Store X register. Mnemonic: STX
Store a copy of the X register in the specified memory location.
Addressing modes available:-

Absolute 8E
Accumulator -
Absolute, X -
Absolute,Y --
Immediate -~
Implied ~-
Indirect --
Zero page 86
Zero page, X -
Zero page,Y 36
(Indirect,X) -
(Indirect),Y -
Relative -

Status Register N V B D | Z C

Store Y register. Mnemonic: STY
Store a copy of the Y register in the specified memory location.
Addressing modes available:-

Absolute 8C
Accumulator)
Absolute, X --
Absoiute,Y -
Immediate --
Implied -
Indirect .-

139

Zero page 84
Zero page, X 94
Zero page,Y -
(indirect,X) --
{indirect),Y -
Relative --

Status Register N V B D1 Z C

Transfer accumulator to X. Mnemonic: TAX
Put a copy of the accumulator into the X register.
Addressing modes available:-

Absolute --
Accumulator -
Absolute, X --
Absolute,Y -
Immediate --
Implied AA
Indirect --
Zero page --
Zero page X --
Zero page,Y -
(indirect,X) --
{Indirect).Y -
Relative -

Status Register N VB DI Z C
* *

Transfer accumulator to Y. Mnemonic: TAY
Put a copy of the accumulator into the Y register.
Addressing modes available:-

Absolute --
Accumulator -
Absolute, X -

140

Absolute,Y --
Immediate -
Implied A8
Indirect .-
Zero page -
Zero page, X --
Zero page,Y --
(Indirect, X) -
(Indirect),Y -
Relative --

Status Register N V 8 D | Z C
* *

Transfer stack pointer into X. Mnemonic: TSX
Put a copy of the stack pointer into the X register

Addressing modes available:-

Absolute --
Accumulator --
Absolute, X -
Absolute,Y -
Immediate -~
Implied BA
Indirect -
Zero page --
Zero page. X --
Zero page,Y -
(Indirect,X) -
{indirect),Y -
Relative --

Status Register N V B D I Z C
* *

Transfer X to accumulator. Mnemonic: TXA

Put a copy of the X register into the accumulator.

141

Addressing modes available:-

Absolute .
Accumulator -
Absolute, X -
AbsoluteY -
Immediate -
Implied 8A
Indirect --
Zero page --
Zero page, X -
Zero page,Y -~
(Indirect,X) -
(indirect).Y --
Relative -

Status Register N V B DI ZC
* *

Transfer X to stack pointer. Mnemonic: TXS
Put a copy of the X register into the stack pointer.
Addressing modes available:-

Absolute -
Accumulator -
Absolute, X . -
Absotute,Y -
Immediate --
Implied 9A
Indirect -
Zero page -
Zero page, X -
Zero page,Y -
{Indirect,X) --
(indirect),Y --
Relative -

Status Register N VB D1 Z C

142

Transfer Y to accumulator. Mnemonic: TYA
Put a copy of the Y register into the accumulator.
Addressing modes available:-

Absolute -
Accumulator --
Absolute, X -~
Absolute,Y --
Immediate --
Implied 98
Indirect -
Zero page --
Zero page X -
Zero page,Y --
(Indirect,X) -
{Indirect},Y --
Relative -

Status Register N VB D1 Z C
* *

143

CHAPTER 7

ORIC’s Operating System

In this chapter we are concerned with those sections of the ORIC's ROM which are
not identifiable as BASIC. The technical term for this is the ORIC’s operating
system. It might be helpful to describe what is meant by this phrase.

Imagine, if you can, that you yourself are the BASIC interpreter. You sit in a little
room all by yourself. There is a letter box marked {N on one wall and another
marked OUT on the opposite wall. On the third wall there is a clock. Your job is to
read all the incoming messages and if you can understand them, take the
necessary action. This action always results in you sending out messages sooner
or later. If you do not understand an incoming message you send out a message
saying SYNTAX ERROR or some such remark.

As you sit in your little room, possibly pondering on the incredible obtuseness of
whoever it is that keeps sending you these ludicrous messages, you have no idea
at all that you are actually inside an ORIC computer. You are similarly unaware that
all incoming messages originate from a keyboard or that all your outgoing
messages end up on someone’s T.V. screen. The clock on the wall is driven by an
agency which is another of life’'s mysteries. in short, it does not matter to you
where the rooni is, as long as the facilities provided are exactly the same as those
you have here, you will be able to function properly.

The room just described and the message carrying and time-keeping facilities are
what the operating system provides. This section of the ORIC's program knows all
about the keyboard and the T.V. screen {well, almost all) and keeps track of the
time and so on. It relieves the BASIC interpreter of a whole load of tasks all of which
are associated with the actual hardware of the computer.

The advantages of structuring a computer’s make-up in this way are two-fold.
Firstly, having written a BASIC interpreter it can be used in any type of hardware
simply by altering the operating system so that the BASIC part of the program
always appears to be in that same room. Secondly, machine code programmers
can use the message carrying and time keeping facilities in the machine
independently of BASIC because these sections are now identifiable as separate
routines. It is this latter advantage that interests us here. We are now going to look

144

at those system routines that are available in the ORIC and describe how to use
them. Because we have two operating systems to describe, each section of this
chapter will be split into two parts, one for each operating system.

7.1 System Calls.

The exact definition of this phrase is a little difficult. It is probably best defined by
an example. In the ORIC computer we know that the screen memory is from
#BBABS to #BFEOQ. Thus, we can put characters on the screen by POKEing them
straight in or by using the PRINT and related commands. From machine code the
same two options are open to us. We can either do the equivalent of POKE or we
can use the system call provided to do the job for us. POKEing or its equivalent may
well be the faster method but using the system call is safer. The reason is that on
this particular version of the ORIC the screen memory is from #BBAB8 to #BFEQ
but on subsequent versions it may not be. Hence, POKEing straight into screen
memory works with this version of the machine but our program would have to be
modified to run on later modets. To someone whois only ever going toown the one
machine this is of little consequence. To a professional programmer who is writing
programs to run on machines for which there are already several versions itisvery
important. He does not want to have to write one program for each version of the
machine,nor does the supplier want to stock separate programs for the various
versions. Thus, the good programmer always uses system calls where these are
available.

The range of activities of system calls is the same, usually, as the range of activities
of the current operating system. Thus these calls may be used to provide inputand
output facilities, or they may set a flag somewhere in memory to indicate that
certain conditions are now required. For example location #26A in both versions
contains certain flags. If bit O of this location is set to O, and the rest of the location
left as it was, the cursor is rendered invisible. Set this bit back toa 1 and the cursor
is visible again. The designers of the ORIC might well have written a system call
just to change this bit because future versions of this machine may not use
location #26A in this way. If there was a system call and if its entry point was
always the same from version to version (easy enough to do using jump tables)
then programs which use the system call rather than changing the location directly
are protected against future alterations in the machine.

V1.0 Calls

The range of system calls available in V1.0 is rather restricted compared to V1.1.
However, a number of useful things can be done. The first requirement of most
programs is to print characters on the screen. This calt is undocumented by the
machine’s designers but there is a subroutine at #CC 12 which seems towork. To
use this routine from machine code, the accumulator must hold the character tobe
printed on the screen. Thus to print a message on the screen we might use:-

145

OuUTPUT LDY @0
NEXT LDA MSGY
BMI OUTEND
JSR #CC12
INY
JMP NEXT
OUTEND RTS
MSG ASC "HELLO THERE™
DFB #FF

This routine works as follows; on entry the Y-register is set to zero. Then the
accumulator is loaded with the first character of the message, in this case ‘H’. This
is tested to see if it is negative and since itis not, the system call is used to print the
character 'H’ on the screen at the current cursor location. The system call also
takes care of the routine chore of moving the cursor along by one character
position so that the next character to be printed will not overwrite the last one. Now
the Y-register is incremented and the routine jumps back to NEXT. The cycle is
then repeated and the ‘E’ is printed. This continues until the byte #FF is loaded,
which is negative, at which point the routine exits. Notice that this routine has not
bothered to save any registers, nor has it sent any control characters to the screen.
The routine at #CC12 will accept all the standard control characters and act on
them correctly.

The next requirement is usually to read a character from the keyboard. Again, in
V1.0, there is no recognisable system call to do this. However this version of the
ROM uses location #2DF to pass the keyboard character between routines. A
machine code program can poll this location for characters. This short program
section demonstrates the method:~

INPUT BIT #2DF
BPL INPUT
LDA #2DF
PHA
LDA @0
STA #2DF
PLA
AND @#7F
RTS

The reason that this routine works is that the location #2DF not only contains the
ASCIl code of the character typed in at the keyboard but also has its top bit set
when a new character is present, thus making it appear to be negative. The input
routine uses the BIT command to test the sign of the location and when this goes
negative the contents are loaded into the accumulator and saved on the stack. The
accumulator is then cleared and stored in #2DF, thus clearing that location and
preventing a single character from being read twice. The saved contents are then
pulled off the stack and the top bit stripped off before returning to the calling
program. Remember that the character is put into location #2DF during an

146

interrupt routine, which is transparent to this polling routine.

When this particular routine is called, it will not return until a key is pressed, which
may not be exactly what is wanted. It may be that a program merely wants to know
if a key has been pressed and only if one has to fetch the code at this focation. If no
key has been pressed, carry on anyway. This next routine achieves this end:-

INPK BIT #2DF
BMI GOTU
CLC
RTS

GOTU LDA #2DF
PHA
LDA @O
STA #2DF
PLA
AND @#7F
SEC
RTS

This routine uses the same mechanisms as previously, but with one addition. The
carry flag is used to signal to the calling program whether or not a character was
found. If this routine returns with the carry flag set, then the accumulator contains
the character code. If the carry flag is clear, then there is no character present. Thus
the calling program would be something like:-

JSR INPK
BCC NONE
CHAR

where NONE is the label for the place the program goes to when there is no
character ready and CHAR is where it goes when one is ready.

There is a special routine for printing messages on the status line of the text
screen. This routine starts at #F82F and on entry it requires the registers to
contain the following information.

Accumulator Message address (low)
Y-Register Message address (high)
X-Register Horizontal position to start {0-39)

The message itself must end with a zera byte. This routine uses locations #0C and
#0D in zero page to set up the indirect address of the message and it then
effectively POKES the characters directly into screen RAM. Try the following
program:-

10 1=0

20 REPEAT
30 READ A

147

40 POKE #400+L,A

50 (=i+1

60 UNTIL A=#FF

70 DATA #A9,#8D,#A0,#EB,#A2,#00
80 DATA #20,#2F,#F8,#60,#FF

80 CALL #400

This program should teli you who the culprits are!

V1.1 Calls.

This version of the operating system is much more advanced, as might be
expected, and it contains a greatly enhanced range of calls which are available to
the user. We shall start with the output and input routines as before.

The call to print a character on the screen now resides at #F77C and the character
to be printed must be in the X-register, not the accumulator. This routine will also
obey all the standard control codes. its use is exactly as in V1.0 with the
exceptions, thus;

0OTPT LOY @0
NEXT LDX MSG,Y
BMI QUTEND
JSR #F77C
INY
JMP NEXT
OUTEND RTS
MSG ASC "HELLO THERE"
DFB #FF

There is now a call to read the keyboard which lives at #EB78. This routine is
effectively the same as the second of the routines listed in V1.0 for reading a
character in that this routine always returns after being calied with the accumulator
containing the character found. If the accumulator is negative, then it also contains
a valid character, if it is positive then no character was found. Thus to see if a key
has been pressed:-

LOOK JSR #EB78
BMI GOTU
NOKEY

where again GOTU is where the program goes to when a character has been typed
and NOKEY is where it goes when one has not.
The special status line message routine now lives at #F865 and requires the

registers setting up on entry as before. The following program demonstrates its
use:~

148

10 1=0

20 REPEAT

30 READ A

40 POKE #400+1.A

50 I=1+1

60 UNTIL A=#FF

70 DATA #A9,#B7,#A0,#ED,#A2,#00
80 DATA #20,#65,#F8,#60,#FF

90 CALL #400

You should now see the word “TANGERINE" at the start of the status line and the
word “"CAPS" at the end of the line has gone into double height characters, or at
least, it has tried to but because the line underneath is blank only the top half of the
characters is visible.

There is another output call to send characters directly to the printer. in this case
the character to be sent must be in the accumulator. The state of the other
registers is irrelevant. All registers will have been corrupted when this routine
returns. Its address is #F5C1. On return the accumulator contains the interrupt
flag register of the internal 6522. This routine will return if the printer is not
plugged in, but will wait for the printer to be ready if it is plugged in and busy.

There is also a complete set of cassette interface routines. The first resides at
#E75HA and its job is to output a leader to the tape so that subsequent loading or
reading operations can synchronise to the leader to prevent error. The character
senttothe recorderis ASCll SYN (Hex 16). The makers claim that 9 characters wilf
be sent to the recorder but looking at the code actually in the ROM suggests that
259 characters will be sent. The actual code is:-

E75A LDX @02
E75C LDY @03 (HERE)
E75E LDA @#16
E760 JSR #E6G5E
E763 DEY

E764 BNE #F8 (E75E)
E766 DEX

E767 BNE #F5 (E75E)
E769 RTS

Totest out how many SYN characters are sent to the cassette recorder, rewrite this
routine slightly and move it into RAM as:-

START 400 LDA @0 A9 00
402 STA 8 856 08
404 STA 9 85 09
406 LDX #2 A2 02
408 LDY #3 A0 03

NEXT 40A JSRINCR 2004 14
40D DEY 88

149

40E BNE NEXT DO FA

410 DEX CA
411 BNE NEXT DO F7
413 RTS 60
INCR 414 INC 8 E6 08
416 BNE OUT DO 02
418 INC 8 E6 09
ouT 414 RTS 60

This is exactly the same routine as before except that it does not load the
accumulator with # 16 and the cassette output routine has been substituted by a
routine that simply counts the number of times it has been called. When this
program is run, the resulting number held in #8 and #9 is 259. To make the
synchronise routine perform its advertised task two changes are necessary in the
source listing resuiting in three changes in the machine code. The firstchange is to
move the branch address back by one instruction, to the place marked HERE. The
second is to load the X-register with 3 and not 2. Sadly neither of these changes
can be made by a user.

The corresponding routine to this one synchronises to the leader just produced.
This routine is at #E735. The last two cassette routines are to write a byte to the
cassette recorder and to read a byte from it. The write routine is at #E56E and the
read routine at #E6CY. These routines exist so that an advanced programmer can
use the cassette recorder to store data directly from within his machine code
program and can, of course, restore that data from within the same program. One
possible use of such mechanisms is in word-processing where text has to be
saved and retrieved if the system is to be of much use.

7.2 Soft Vectors

A vector is an address stored in two consecutive memory locations. When a
particular event occurs the processor is directed to that address by reading the
contents of these two locations. The 6502 processor has three events which
cause it to read certain locations and treat their contents as addresses.

The first such event is the power-on or reset event. it must be obvious that when a
micro-processor is first switched on it must perform a fixed sequence of tasks, the
last of which is to go 1o a known address and either use the contents of that
address as code or as the address of the start of the code. When the 6502 is first
switched on it takes the contents of locations #FFFC and #FFFD and puts them
into the program counter as address low and address high respectively. It then
starts executing the code found at the address thus generated.

The other two events are the two interrupts which the 6502 allows. The first
interrupt is called the Non-Maskable interrupt {NMI for short) and this is vectored
through locations #FFFA and #FFFB. This interrupt is called non-maskable
because the 6502 cannot prevent itself being interrupted by this event.

150

The second interrupt is maskable which means that the 6502 can ignore such
requests until it is ready for them. This is achieved by setting or clearing a bitin the
status register of the machine. See Chapter 6 for the two instructions SEl and CLI
which do just this. This interruptis vectored through locations # FFFE and # FFFF.

Soft Vectors (V1.0)

The vectars found in the memory locations just detailed are;

#FFFA & #FFFB #0228 NMI
#FFFC & #FFFD #F42D POWER ON
#FFFE & #FFFF #0228 IRQ

Power on or reset is not a ‘soft’ vector but it is included here for completeness.

The code found at #022B is #4C, #30, #F4 which translates into ‘jump to
location #F430'. That found at #0228 is #4C, #03, #EC meaning ‘jump to
focation #ECO3. Both of these vectors can be changed and used for other
purposes. However the user’s IRQ routine should end by jumping to #ECO3 or the
ORIC will lose the use of its keyboard.

There is another way of using interrupts which are not generated by the internal
timer. When an interrupt occurs the ORIC checks the timer to see if that was the
cause of the trouble. If it was not a jump to #230 is made. The code normally
found here is #40 meaning RTl. Obviously this code can be replaced by user’s
own code to deal with externally generated interrupts. Note that such code should
preserve all registers,

Soft Vectors (V1.1)

The table of vectors in this version is as follows:-

#FFFA & #FFFB #0247 NMt
#FFFC & #FFFD #F88F POWER ON
#FFFE & #FFFF #0244 IRQ

The code found at #247 is #4C, #B2, #F8 meaning 'jump to location #F8B2’
and that found at #244 is #4C, #22, #EE meaning "jump to location #EE22",

The return from interrupt handler is now at #24A and there is space available to
patch this area to a jump, as at #247, but no more.
7.3 Special Commands.

There are two undefined commands which are teft for the user to write his own. A
sortof do-it-yourself facility. Both of these commands execute jumps and the jump
address can be altered to suit the user’'s own routines.

151

The first of these commands is the 'I". This causes the processor to execute a jump
indirect on #2F5. The normal code here is the address of the error routine. This
address differs form version to version, but its effect is the same. The code at
#2F5 can be changed by a user to make this command jump to his own routine.
One such command is demonstrated in Chapter 8. The method is fairly
straightforward. Firstly, set up the machine code routine that performs the
required task, making sure that the routine does not produce a net alteration in the
processor's stack and that it ends in RTS. Secondly, set the contents of locations
#2F5 and #2F6 to pointto the entry address of the routine, just like any other soft
vector.

The simplest example is to put the code #60 at #400, meaning RTS, and type in
DOKE #2F5,#400. Now type {RETURN) and no error message is printed. The
processor has been directed to the RTS instruction and it has come safely back
again.

The second of these commands is the ‘&', This time the soft vectoris at #2FC and
#2FD, preceded by the code #4C at location #2FB meaning JUMP. Thus the
contents of #2FC and #2FD can be changed in the same way as before to give
another user defined command. There is an additional twist to this command
because the ORIC views this as a function cali, in the same way as in BASIC the FN
command sends the processor off to the defined function. This means that the ‘&’
command can pass results to the processor through the floating point accumulator.
In fact a number has to be passed using this call or an error will result. The correct
syntax for this command is ‘&{N) where N can be any number. The resuit of this
command is firstly that the argument N is normalised and put into the floating
point accumulator and then the code beginning at #2FB is executed. To make full
use of this command requires some understanding of floating point arithmetic.

The floating point accumulator in the ORIC is from #DO to #D5 with these
locations used as follows:-

#DO EXPONENT
#D1 MANTISSA(HIGH)
#D2 MANTISSA

#D3 MANTISSA

#D4 MANTISSA(LOW)
#D5 SIGN

A floating point number is stored as +- a*2n where ‘a’ is the mantissa and 'n’ the
exponent. This method of representing numbers is not as fearsome as it looks. For
example the number 8 would be represented by 1*213. Thus the argument to the
'8’ command is stored in the floating point accumulator in this format. This
number is ‘normalised’ first meaning that maximum use is made of the 'storage
facilities to keep as many decimal places in the computer as possible. To
demonstrate again, the number 32 if normalised to a decimal format would be
stored as .32*1012. If stored in binary format it would be .1*216. You will notice
that normalised numbers have no digits to the left of the decimal point, and that
they are organised so that the mantissa has its first non-zero digit immediately to

152

the right of the point and the exponent is adjusted accordingly.

The way the ORIC uses its locations is shown by the way the numbers +8, -8, and
1 are stored:-

#DO #84 #84 #81

#D1 #80 #80 #80

#D2 #00 #00 #00

#D3 #00 #00 #00

#D4 #00 #00 #00

#05 #00 #FF #00
+8 -8 1

Thus, if #D5 is negative, the number is negative. Also the exponent is actually
(#80+N) where N is the actual power. This gives a simple method of dealing with
exponents of the type a-10, because now all exponents are positive.

Unfortunately the designers of the ORIC have not published the entry points for
their own floating point routines so users will have to make up such routines as
they require. There are a number of books on the market which describe floating
point arithmetic in some detail and interested readers should obtain one of these.

7.4 BASIC Entry Points.

A number of the graphics and sound routines have been made available to the
machine code programmer, but only in V1.1, The majority of these routines
require some parameters to be passed to them and an area of memory has been
set aside starting at #2EO for this purpose. The address #2EO will be referred to
as the label PAR in the rest of this chapter, thus PAR+1 will mean address #2E1.
In all cases the location #2EQO should be set to minus one before the routine is
called. Also note that all parameters passed can be two bytes long and that the
least significant byte is the first byte, which is as usual for a 6502. The cailed
routines actually increment the location #2EQ if an error is found in the calling
parameters, so setting this to~1 means that if an error is found this location will be
zero when the routine returns. If there is no error, it will be negative and can be
tested using the BIT command.

GRAPHICS

ROUTINE ADDRESS PAR+1 PAR+3 PAR+5 REGISTERS
CORRUPTED

CURSET #FOCB X-VALUE Y-VALUE FBVALUE AXY

CURMOV #FOFD X-VALUE Y-VALUE FB VALUE

DRAW #F110 X-VALUE Y-VALUE FB VALUE

153

CHAR #F12D CHAR 0=STD; 1 FB VALUE

=ALT
CIRCLE #F37F RADIUS FB VALUE
PATTERN #F11D PATTERN VALUE
POINT #F1C8 X-VALUE Y-VALUE On return PAR+1=0=B/GND;=1
=F/GND
FiLL #F268 No.rows No. cells Value
PAPER #F204 Colour
INK #F610 Colour
SOUND
PING #FA9F
SHOOT #FABS
EXPLODE #FACB
ZAP #FAE1
KBEEP #FB14 Normal keyclick
CONTBP #FB2A Control keyclick
SOUND #FB40O Channel Period Volume
MUSIC #FC18 Channel Qctave Note PAR+7=Volume
PLAY #FBDO Tone ch, Noise Ch Env. mode PAR+7=Env Per.
w8912 #F590 Acc.=reg.No X=0/pdata AXY

The last call allows an advanced programmer to write directly into the registers of
the W88912 sound chip. In fact all of the above routines will only be of use to
advanced programmers and the author hesitates to tell such people how to use
system calls!

V1.0 Screen Control

The V1.0 operating system stores information about the video display in RAM
locations #268 to #26F. The system uses these locations to keep track of where
the screen memory starts, how many rows can be printed, where the cursor is and
so on. By juggling with the contents of these locations various effects can be
achieved.

Locations #26D and #26E contain the address of the start of screen RAM. This
address is #BB80 in TEXT and LORES modes and #BF40 in HIRES mode.
Location #26F contains the number of rows avaialble on the screen. In TEXT and
LORES modes this numberis 27 and in HIRES mode itis 3. Thus the TEXT screen
starts at #BB80 and can print out on 27 lines.

in HIRES mode the text screen starts at #BF40 and can print 3 lines.
The use that can be made of this information is in setting up permament headings

on the screen which cannot be scrolled away or cleared by the usual methods. Try

154

this short program:-

10 CLS

20 PRINT "HEADING LINE 1
30 PRINT "HEADING LINE 2"
40 PRINT "HEADING LINE 3"
50 PRINT “"HEADING LINE 4~
60 DOKE #26D,#BC20

70 POKE #26F,23

80 FOR I=0 TO 40

90 PRINT “"NEXT LINE"

100 NEXT |

When this program is run, the four "HEADING" lines remain fixed at the top of the
screen while the rest of the screen is scrolled.

This technique can be adapted to include footings by reducing the number of lines
to be scrolled. Before doing the modification, reset using the underneath button
and then add the line:-

65 PLOT 1,26,”FOOTING”

and change line 70 to:-

70 POKE #26F,22

Now the word “FOOTING" will remain at the bottom of the screen as well as the
four heading lines at the top and only the area of screen in between these will be
scrolled.

The ORIC stores information about the current cursor position in #268 and
#269. #268 contains the number of the row the cursoris on {0 to 27) and #269
contains the column (O to 39). By altering these numbers the current cursor
location can be changed and hence printing can be made to occur at any position
on the screen. This can already be done from BASIC using the PLOT command but
machine code programs do not have easy access to the BASIC routines.

V1.1 Screen Control

The screen control subroutines have been completely re-written for V1.1 and the
old locations are not used. Now locations #27A and #27Band #278 and #279
contain the screen addresses. These addresses are the start of the first and second
text lines respectively. Unfortunately these addresses are not used in the same
way as before and setting a protected header under V1.1 is not done the same
way. Thus to set a protected header these two addresses must be changed
together. Further, to keep the display readable, the locations #27A and #278B
should contain the address of the start of a line {(#BBA8, #B8D0, #BF8,
#C20,...etc) and locations #278 and #79 the address of the start of the next line.
If these criteria are not met, strange and unpredictable things can happen. Thus to
set a header use:-

10 CLS
20 PRINT "HEADING LINE"

155

30 DOKE #278,#BBF8
40 DOKE #27A,#BBDO
50 FOR I=0 70 40

90 PRINT "NEXT LINE"|
100 NEXT I

This leaves just one line at the top of the screen as a header. To produce a header of
more then one line is apparently not possible, at least not if the screen is to be
scrolled more than about 4 times. The problem arises with the frame synchronisation
generation and there does not appear to be a simple solution.

The cursor control is also different under V1.1 with location #268 containing the
line number the cursor is thought to be on and location #27E containing the
number of lines on the screen. Changing location #27E which normally holds 27
will alter the number of lines scrolled. Thus changing this location to 26 will leave
the bottom line unscrolled. Changing location #268 merely changes the line
number which the computer thinks the cursor is on. The computer treats this
location as a counter and continually compares its contents with location #27E.
When they are equal, the screen is scrolled on the next line feed. Consequently
changing the contents of location #268 can induce early scrolling or delay
scrolling. This gives another means of protecting a footing.

Both of these versions use location #26A as a mode byte, the functions of which
have already been detailed in Chapter 4. However, here is the table again for
completeness:-

BIT FUNCTION
7 SPARE
6 SPARE
5 MASK FOR COLUMNS 0,1 1=MASK ON
4 1=LAST CHARACTER WAS ESCAPE
3 1=KEYCLICK OFF.0=KEYCLICK ON
2 SPARE
1 1=VDU ON.O=VDU OFF
0 1=CURSOR ON.0=CURSOR OFF.

The only function which may need amplifying is that for bit 5. If this bitis settoa’1’
subsequent characters can be printed in the protected columns which control the
background and foreground attributes in TEXT mode.

156

7.5 Simple De-Bugging Techniques For Assembly Language.

While it is relatively easy to write programs in assembly language once you have
acquired the knack, it is not so easy to de-bug those same programs on a machine
like the ORIC. Having spent ages typing in all the data statements that go into
making up your masterpiece you then type CALL #400, or wherever and the
machine goes away and hides. What has happened and why? Hours spent
studying the listings and comparing the data in the machine with what you worked
out will not reveal the answer. The only way is to actually watch the program at
work. De-bugging programs can be bought and these are more or less useful
depending, largely, on how much is paid for them and on who wrote them. What s
presented here is a de-bugging method which can be adopted by anyone.
Naturally it requires some machine code and the version presented here has all
been de-bugged and is known to run. This will hopefully provide a starting place
for your own, more complicated de-bugging tools.

The centre of all de-bugging is to print out on the screen the contents of the
program counter, the accumulator, and the other registers. Without this information
no real work is possible. Since BASIC already has handy printing commands, these
will be used. Thus the program will be a mixture of BASIC and machine code.

The simplest de-bugging technique of all, known as break-pointing, is to remove
some of the program being tested and insert a jump to a known subroutine. After
this jump has taken place, the removed piece of code can be replaced or not,
depending on the style you wish to adopt. For example, suppose a program such
as this is being tested:-

400 LDA @#40
402 STA #48
404 LDA @#FA
406 STA #09
408 LDY @#0
40A LDA (8),Y

Provided the absolute addresses of all the statements in the program are known,
as shown above, then the method is to replace some of the code with a JSR
ADDRESS command as shown:-

400 LDA @#40
402 STA #08
404 JSR #B00O
407 RTS

408 LDY @#0
40A LDA (8).Y

When the machine code program is run it will jump to location #BO0OO after the
second instruction of the original program has been executed. At location #B000
there is a small segment of machine code which saves all the processor’s registers

157

in zero page. The inserted RTS instruction returns the processor to BASIC. Notice
that JSR instructions are used here because they ensure that the current program
counter is saved on the stack and can therefore be pulled off and stored for later
examination. The BASIC section of the program prints out these locations nicely
formatted on the screen and then waits for the next command from the user.

To set up such a system the program must first POKE the required machine code
segment into #BO00O, or wherever, and then prompt the user for acommand. The
first command must be to set a breakpoint, which results in the machine code
program under test being modified as above. This routine must save the old data
from the machine code under test because it will have to be replaced later. The
user can then tell the de-bugger to start running the machine code program under
test at an address before the breakpoint address. The de-bugging program simply
does s CALL #ADDRESS because the routine at#B000 ends with RTS. Hence the
statements after the CALL # are formatted print commands to show the registers.

Here follows a simple de-bug program:-

10 DIM P(10):CLS PRINT

20 FOR T=0 TO 10

30 PRINT CHRS (9) ;

40 NEXT |

50 PRINT CHR$(4) “ "CHR$(27) “J” CHR$(27)"ASIMPLE DEBUG”
60 PRINT:PRINT CHR$(4):PRINT SPC (5);

70 PRINT CHR$(27)"DP.C. A X Y ST SP”

80 DOKE $26D,$BC48

90 POKE $26F.,22

PRINT HEX$(DEEK(4))" “"HEX$(PEEK(6))" "HEX$(P

100 GOSUB 1000

110 PRINT:PRINT:PRINT:PRINT

120 INPUT”BREAKPOINT ADDRESS= ;A

130 P{1)=PEEK(A):P(2)=PEEK(A+1):P(3)=PEEK(A+2):P(4)=PEEK(A+3)
140 POKE A,32:POKE A+1,0:POKE A+2,144:POKE A+3,96

150 INPUT"START ADDRESS= ;B

160 PRINT" PRESS ANY KEY WHEN READY"

170 GET A$

180 CALL B

190 CLS

200 PRINT SPC(5);

210 PRINT HEXS$(DEEK(4))" “HEXS$(PEEK(6))" “"HEXS(PEEK(7))" “HEX$
(PEEK(8))” "HEX$(PEEK(9))" ";

220 PRINT HEXS$(PEEK(3))

230 GOSUB 2000:GOTO 110

158

1000 1=0
1010 REPEAT

1020 READ A

1030 POKE #9000+1,H

1040 I=I+1

1050 UNTIL A=#FF

1060 RETURN

1070 DATA #85,#06,#86,#07,#84,#8,#08

1080 DATA #68,#85,#09,#BA #86,#03,#68

1090 DATA #85,#32 #38,#E9,#02,#85 #04

1100 DATA #68,#865,#31,#E9,#00.#85,#05

1110 DATA #A5,#31,#48 #A5,#32,#48,#60

1120 DATA #FF

2000 POKE A,P(1):POKE A+1,P(2):POKE A+2,P(3):POKE A+3,P(4)
2010 RETURN

Notice that this program always leaves the machine code program under test in
the condition in which it found it. This method is considered to be safer than
having to clear breakpoints after debug because itis so easy to forget to clear those
points and save a program to cassette with a breakpoint still embedded in it. Also
this program is designed to work under V1.0. Readers with V1.1 will have to
modify lines 190 on and use the PRINT @ X.Y;STRING command to produce the
desired effect. Also lines 80 and 90 must be ommited under V1.1.

Lastly because this de-bugger is so very simple it will not like it if the machine code
under test produces a net change in the stack. To put it another way, if the tested
program pulls the stack, and then does not push it back before the breakpoint is
met, catastrophe will probably result. It is possible to write de-buggers that split
the stack so that the de-bugger has one half and the program under test the other
but this is beyond the scope of a simple program.

159

CHAPTER &

Useful ORIC Programs

This chapter is a collection of programs which demonstrate some of the abilities of
the ORIC computer. Some of these programs are intended to make life easier for
the home programmer while programs are under development. Qthers are just
examples of techniques or facilities provided. We shall first look at ways of
handling data on the screen.

8.1 Simple BASIC.

Sideways scroll (left)

10 FOR 1=0 TO 26*40 STEP 40
20 FOR J=0 TO 36

30 A= # BBAA+J+I:B=A+1

40 POKE A (PEEK(B}))

50 NEXT J

60 NEXT |

All BASIC programs using FOR...NEXT loops take a long time to execute, so this
could be better described as a sideways ripple. If converted to machine code the
resuits should be fast enough for anyone.

Sideways scroll (Right)

10 FOR I=0 TO 26*40 STEP 40
20 FOR J=36 TO O STEP -1

30 A=# BBAA+J+:B=A-1

40 POKE A.(PEEK(B})

50 NEXT J

60 NEXT |

The same effect as before but this time going the other way.
Upwards scroll
10 FOR 1=0 TO 25*40 STEP 40

20 FOR J=0 70 36
30 A= # BBAA+J+1:B=A+40

160

40 POKE A,(PEEK(B))
50 NEXT J
60 NEXT |

Downwards scroll

10 FOR |=25*40 TO O STEP —40
20 FOR J=0 TO 36

30 A=# BBAA+J+1:B=A-40

40 POKE A,(PEEK(B))

50 NEXT J

60 NEXT |

Fill screen with random characters.

10 FOR 1=0 TO 26*40 STEP 40
20 FOR J=0 TO 36

30 A= # BBAA+J+|

40 POKE A,(93*RND(1)+32)

50 NEXT J

60 NEXT |

This completes a family of programs all based on the same arithmetic. The location
$BBAA is the memory location corresponding to the first printable character
position on the screen. The number of printable characters on alineis 38, butlines
are 40 characters apart because of the 2 serial attributes at the left hand edge of
the screen. These scroiling programs will scroll entire screen contents, which
includes serial attributes, so that predefined colour blocks will move with the
characters they were originally associated with.

The next program demonstrates the use of serial attributes in producing apparent
motion. The ORIC only has one screen ‘page’ (i.e. it is not possible to draw or write
on two pages and flip the screen between the two), so programmers must make
the best use possible of the facilities provided.

Serial Attributes

10 CLS

20 FOR I=0 TO 11

30 PLOT 19+1,1+2,"*"
40 PLOT 19-1,14+2,*"
50 NEXT |

60 FOT I=11 TO O STEP -1
70 PLOT 19+,24-1,"*"
80 PLOT 19-1,24~|,"*"
90 NEXT i

100 FOR I=0 TO 26
110 PLOT 0,17

120 NEXT |

161

130 FOR I=3 TO 23
140 PLOT 19,17

150 NEXT !

160 I=1

170 REPEAT

180 I=l+1

190 PLOT O.LO:WAIT 10
200 PLOT O.1,7

210 UNTIL 1=24

220 REPEAT

230 I=i-1

240 PLOT 18,LO:WAIT 10
250 PLOT 18,17

260 UNTIL =3

270 GOTO 160

Lines 10 to 80 ciear the screen and draw a diamond shape in asterisks. Lines 100
to 150 change the left hand edge attributes for foreground colours to white and
put a second column of foreground attributes down the centre line of the diamond.
The diamond is now invisible. Lines 160 to 210 change the foreground attributes
down the left hand edge of the screen sequentially so that the first is for black, and
all the rest white; the second is for black, and the rest white; the third is for black
and so on until they have all been set for black once and back to white again. Lines
220 1o 260 do the same but for the second column of attributes. Line 270 makes
the whole movement sequence repeat.

When developing programs,it sometimes happens that a line or two is missed out
when the program is first typed in! The missing lines then have to be inserted and
this ruins the even spacing of the line numbering sequence 10, 20, 30...etc. It can
also happen that so many lines have to be inserted, there is no longer any room for
them, unless fractional line numbers are allowed! Line 10 1/2 is likely to be
rejected however. For these reasons, a renumbering program is quite useful. The
following short program should be added on to the end of a program under
development and left there until development is complete, at which time this
segment can be removed and the final version saved, numbered in a beautifully
even sequence.

Renumbering Program

10 REM PROGRAM

20 REM UNDER

30 REM DEVELOPMENT
40 REM WOULD BE

50 REM HERE

60 END

70 i=#501

80 INPUT”START AT";J
90 INPUT"STEP";T

100 REPEAT

162

110 A=DEEK(I)

120 DOKE(i+2)}),J:d=J+T
130 I=A

140 UNTIL A=0

150 END

When the time for renumbering comes, type in the immediate command GOTO 70
{or whatever the line number the statement I=#501 is on) and set up the
constants as requested. VWhen you list your program, all will be as smooth as you
could wish.

With this system you can renumber upwards or downwards. That is, you can go
from 10, 20,30,t05,10,15,0rfrom 1,5,7, 1110 10, 20, 30, etc as desired. The
program is very simple, however, and does not check for statements of the type
GOTO 75 and hence if your program contains any of these, you will have to sort
these out yourself. As an aid to this kind of sorting, always include a REM
statement immediately before the line number which is to be referenced. For
example:-

130 REM SCREEN DUMP ROUTINE
140 I=# BBAA
150 ...

etc.

Line 140 is the line referenced by a GOSUB or GOTO statement and after
renumbering it is now relatively easy to find because there is a REM statement
immediately before it. To make it really stand out, use:-

1 30 REM***************

and at the GOTO or GOSUB use:-

60 GOSUB 130 o sk ok o ok ok oK ok ok ok ok

A second GOSUB or GOTO would use:-
170 REMPRPQ@RRRQRAQORRERE@
and be referenced by:-

50GOSUB 170 'Q@QPRRRARORRE®
and so on.

When the program is complete, the REM’s can be removed so that the space
consumed by the program is reduced. This may have to be done before final
completion on a 16K machine and is the reason for not referencing REM
statements in GOTO and GOSUB commands.

String Arrays
Although the manual for the ORIC does not state the fact explicitly, the computer

does support the use of an array of strings. This is very useful when required to
arrange entries in alphabetical order or in order of achievement. The following

163

program sorts names into alphabetic order:-

10 CLS
20 INPUT"NUMBER OF NAMES=";N
30 DIM A S (N+1)

40 FOR X=1 TO N

50 INPUT “NAME IS?";A $(X)

60 NEXT X

70 CLS:M=2

80 GOSUB 180

90 FOR X=1 TO N

100 FOR J=N TO X+1 STEP -1

110 IF AS(J)<A$(J~1) THEN BS=AS$ (J-1):AS{J-1)=AS{J):A$ (J)=B
120 M=12

130 GOSUB 180

140 NEXT J

150 NEXT X

160 END

170 REM PRINT ROUTINE

180 FORK=1 TO N

190 PLOT M.(5+K),A$ (K)+"
200 NEXT K

210 RETURN

Lines 20 to 60 ask for the number of entries, then the entries themseives and
stores them in an array of strings. Lines 70 to 80 print out the entries in their
original order, down the left hand side of the screen. Lines 90 to 150 sort the
entries as a ‘bubble sort’ and print each effort on the screen next to the original
order. At the end of the program the screen display shows both the original order
and the finally sorted order, side by side.

The only point to note is the PLOT statement in line 190 where several spaces are
added on to each string as it is PLOTted. The reason for this is to make sure that a
short string completely overwrites and erases a longer one. Without these spaces,
if FRED were to replace MICHAEL, the actual result on the screen would be
FREDAEL.

As the program stands, the entries are sorted with the smallest value string at the
top, lowest value strings at the bottom. This can be reversed by changing the ">’
sign in line 190 to0 ‘<.

Tomake the workings of this program even more watchable the following listing is
included. This is reproduced in full even though it duplicates some of the above
program in order to avoid any mis-understanding.

10 CLS

20 INPUT"NUMBER OF NAMES=";N
30 DIM A $ (N+1)

40 FOR X=1 TO N

50 INPUT “ENTRY=";A $ (X)

164

60 NEXT X
70 CLS:M=2

80 GOSUB 180

90 M=20

100 GOSUB 180

110 FOR X=1TO N

120 FOR J=N TO X+1 STEP -1
130 IF A$(J)<A $ (J-1) THEN GOSUB 230
140 NEXT J

150 NEXT X

160 END

170 REM#******

180 FOR K=1 TO N

190 PLOT M,(5+K).A $ (K)+"
200 NEXT K

210 RETURN

220 REM@RE@RE@®@

230 B$ =A $ (J):C $ =A$(J~1)
240 FOR P=0 TO 7

250 WAIT 10

260 PLOT M-P,5+J,8$ +"

270 PLOT M+P-1,4+J," “+C$
280 NEXT P

290 PLOT M-P,5+J,"

300 PLOT M-P.4+J,B$

310 PLOT M+P-1,4+3,"

320 PLOT M+P-1,5+J,C$
330 FOR Q=0 TO 7

340 WAIT 10

350 PLOT M—-P+Q,4+J," “"+B $
360 PLOT M+P-1+Q,5+J.C$+"
370 NEXT Q

380 A $(J)=C$:A$ (J-1)=B$
390 RETURN

Provided you type this in with no mistakes, you should see the action of a ‘bubble
sort’ quite clearly on your screen.

This type of program also lends itself to sorting out a class list in order of
achievement, in an examination for example. Again, this next program has some
duplication.

10 CLS

20 INPUT"NUMBER OF NAMES=";N
30 DIM A$ (N+1)

40 FOR X=1 TO N

50 INPUT"NAME=";A $ (X)

60 INPUT"SCORE=";A(X)

70 NEXT X

165

80 CLS
90 FOR X=1 TO N

100 FOR J=N TO X+1 STEP -1

110 IF A(J)<A(J-1) THEN GOSUB 170

120 NEXT J

130 NEXT X

140 GOSUB 230

150 END

160 REM****+

170 T=A{J):U=A(J~1)

180 B$=A$ (J):C $=A$ (J-1)

180 A(J)=U:A(J-1)=T

200 A$ (J)=C$:A$(J~1)=B$

210 RETURN

220 REM@@ @ Q@@

230 FOR K=1 TO N

240 R $=STR $ (A(K))

250 PLOT 10,5+K.A$ (K)

260 PLOT 20,5+K,B$

270 NEXT K

280 RETURN

As this program stands, the scores will be printed in green due to a peculiarity
associated with the STR$ command. To overcome this slight problem, modify line
240 to read:-

240 R$ =STR$ (A(K)):R$ =RIGHTS (R$.(LEN(RS)-1))

This now strips out the first character of R$ which is the serial attribute
responsible for the green colour.

8.2 LORES Graphics.

This program is an automatic histogram maker. It uses low resolution graphics to
achieve its ends and to make life simple, a block character is defined as the
character used to produce the vertical columns of the histogram. This limits the
range of the resuit to 26 and makes the resolution {1/26)*100%= 3.8%. To
obtain better resolution would require adapting this program to use the high
resolution mode of the ORIC, making it altogether more complicated and defeating
the object, which was to produce a simple, colourful histogram:-

Histograms

10 CLS

20 FOR I=0 TO 7

30 POKE(46856+1),255
40 NEXT |

50 DIM C(50),V(50)

166

60 PRINT CHR$(17)

70 GOTO 90

80 PRINT “TOO MANY COLUMNS”

90 INPUT"NUMBER OF COLUMNS=";N

100 IF N>17 THEN 80

110 FOR J=1 TO N:F=0

120 PRINT “COLOUR OF "J"th COLUMN=";

130 INPUT C(J):IF C(J)>7 THEN PRINT COLOUR VALUE TOO GREAT":GOTO
120

140 INPUT"VALUE OF COLUMN=";V(J)
150 IF V(J)>26 THEN PRINT“VALUE TOO GREAT":GOTO 140
160 NEXT J

170 LORES O

180 FOR J=0 TO 26

190 PLOT 0,{26-J),STR$(J)+"="

200 NEXT J

210 FOR K=3 TO 37 STEP 2

220 PLOT K,26,"~"

230 NEXT K

240 FOR J=1 TO N:D+2*J+2

250 FOR K=1 TO V{J)

260 PLOT D,(26~K),C(J)

270 PLOT D+1.,(26-K),"a"

280 NEXT K

290 NEXT J

300 GOTO 300

This program is a little cunning in one or two places, but is not difficult to
understand. Lines 10 to 40 clear the screen and re-define, the character 'a’ as a
solid block. Lines 50 to 70 set aside memory for the two arrays needed by the
program and turn the cursor off. Lines 80 to 160 ask for colour information and
value information for each column required. Lines 170 to 200 put the machine
into LORES mode and draw a vertical axis with numbers on it. Lines 210 to 230
draw a horizontal axis using the characters '~ and "'. Lines 240 to 290 actually plot
each column up the screen by plotting a serial attribute first and then the redefined
character ‘a’. Each column is separated from its neighbour by the serial attribute
for the next column. It would also be possible to include a legend at the top right
hand corner of the screen showing which colour represented which quantity. This
is left to the reader as an exercise.

8.3 HIRES Graphics.

This program is a demonstration of high resolution colour graphics and is slightly
more restful than watching goldfish.

Relaxation!

10 HIRES

167

20 FOR N=#A000 TO #BF18 STEP 40
30 POKE N+1,INT(RND(1)*7)+1

40 POKE N,INT(RND(1)*7)+16

50 NEXT N

60 CURSET 120,100,3

70 FOR X=95 TO 1 STEP -1

80 CIRCLE X,1

90 NEXT X

100 A=1:D=23

110 1=0

120 REPEAT

130 B=40961+40*:C=# BF18-40%
140 POKE B.,A:POKE C.D

150 I=i+1

160 UNTIL B>#BF17

170 A=A+1:IF A>7 THEN A=1

180 D=D-1: IF D<16 THEN D=23
190 GOTO 110

Line 10 puts the machine into HIRES mode. Lines 20 to 50 plant random
background and foreground colour attributes down the left hand edge of the
screen. Lines 60 to 80 draw a set of concentric circles in the middie of the screen,
these circles being seen in random foreground colours. Lines 100 to 180
sequentially alter the background and foreground attributes in the very left hand
columns, cycling through all possible attributes for each. These cycles are
arranged so that the foreground attributes change from the top down and the
background ones from the bottom up. The HIRES mode errors due to digitisation
can be seen as background colours "spotting through’ the foreground colour disc.

Another use of a high resolution computer is to draw graphs. These graphs can
either be results obtained in an experiment, or a mathematical function under
investigation. The next program sets up axes centred on the screen and then puts
out any desired polynomial. (A polynomial is an equation of the form Y=AXTN +
BXT{N-1) +CXI{N- 2} ... etc. A quadratic equation is a polynomial or order 2.
Thus Y=AX12 + BX +C, which is well known to mathematical students is a
polynomial of order 2 with coefficients A, B, C of X12, X11, and X10. This first
program simply plots the relevant points.

Plotter

10 CLS

20 INPUT"ORDER OF POLYNOMIAL";0
30FORI=0TO O

40 PRINT "COEFFICIENT OF X"1"=;:INPUT A({l)
50 NEXT |

60 HIRES

70 CURSET 120,100,3

80 DRAW 100,0,1:DRAW ~200,0,1

90 CURSET 120,100,3

168

100 DRAW 0,-100,1:DRAW 0,199, 1
110 X=—10

120 REPEAT

130 X=X+1:GOSUB 180
140 CURSET A,B,1

150 UNTIL A=239

160 END

170 REM*******

180 Y=0

190 FOR I=0 TO 1 STEP -1
200 Y=Y+A(l):Y=Y*X

210 NEXT |

220 Y=Y+A(0):B=100-Y
230 IF 8>199 THEN B=199
240 IF B<O THEN B=0

250 A=X*12+120

260 IF A>239 THEN A=239
270 RETURN

Lines 10 to 50 ask the order of the polynomial and the coefficients of X. These
coefficients are then stored in an array A{l). Lines 60 to 100 set the machine into
HIRES mode and draw the central axes. Lines 110 to 160 repeatedly calculate Y
for the next value of X and plot the required point on the screen. The subroutine at
lines 180 to 270 calculates the value of Y for a given value of X and makes sure
that the point to be plotted lies within the allowable range. This does mean thatany
points outside the range appear on the border of the screen, but this is notlikely to
cause much ambiguity.

Notice that the values used for X have been scaled up to effectively expand this
axis by a factor of 12. This was found to be necessary to make a reasonably sized
diagram on the screen. To test the program, try a simple square law. Answer
2RETURN to the ORDER OF POLYNOMIAL question and then 0,0 and 1 in
answer to the coefficient questions respectively.

8.4 Music.

We shall now try some music programs to demonstrate the power of the ORIC's
sound generator as a musical box in three voices. None of the following programs
make any use of the envelope commands. Even so, they give good value for
money.

The old favourite “Twinkle twinkle little star” is first, starting off as a statement of
the tune, and then harmonising using two and then three voices.

169

Twinkle, Twinkle Little Oric

X

K S T S A v i et S e S S S S A A S e S S
(&) Lt I e e s = I B

.

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

0
D
B
B
F,
0
1
1
1
1
1
1
1
1
11
1,
1,
1,
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
5
8
1
1

llllllll

10 REPEAT
20 PLAY H.0,0,

170

™ O
- omo -) o O« oW 1B _ MO o o
0B~ O=O - ama =m0 nn O A aaONtNINtNONN g nRononing
Mo mEne S0 f0nn Sl 00 0NN SN N g e e NN NN N N -
e T T N e L e T T e e T T e e e TN T TN RN RNNNN TR0 QWM m o

470 DATA
480 DATA
490 DATA
500 DATA
510 DATA
520 DATA
530 DATA
540 DATA
550 DATA
560 DATA
570 DATA
580 DATA
590 DATA
600 DATA
610 DATA
620 DATA
630 DATA
640 DATA
650 DATA
660 DATA
670 DATA
680 DATA
690 DATA
700 DATA
710 DATA
720 DATA
730 DATA
740 DATA
750 DATA
760 DATA
770 DATA
780 DATA
790 DATA
800 DATA
810 DATA
820 DATA
830 DATA
840 DATA
850 DATA
860 DATA
870 DATA
880 DATA
890 DATA
900 DATA
910 DATA
920 DATA
930 DATA
940 DATA
950 DATA

171

0009 ~
o 0 ~~~ N _CwoON noo - ~
~NOWONOMNMNMNOQ L B~ mCARCNNNMMAQANNNT TNy
g NN Q g R e Ll R Rk At L K B R L RSy
T OONR e u NNCLROA VeSS = RSN T =0 G
OMNNNNO MMM Yoo 00 e B A T T o Rl A R T N A S R R A
= Q@ OO CQuaue LSRNV Vg NP g g RO D

rrrrrrrrrrrrrrrrr

‘Drink To Me Only’ follows, again in three part harmony without using envelope

WO OO M 08 Gmoo e m e e e e = 0000000000 @~
TS TS T~ MHACCC&3%4445555544455%54444444444
< LK . O Goa>E=< S g

SEERERRARET T4 LX38005EE LN LR RaR R R R RERREREREER
afaYofafalalaFalafalal S A SSSAaS500000000000004C<0000000008aA
0000000000 E 000000 DO00000000000000 200000000000
ONNONQe—NM T INW = AN NONOTNO NN ONONO~NOTNONVDNO —~NM T
DN NO0O0O0O0 5 Trrr e mr e e e ANNONNNNNNOOOOO

Ll ndil ol ol ol S O

172

Yo o 0VOOND ™MOOD ©o 0O~ 00VOO+~00 ©_<¢ OWIININONO

NN AN O ORNNNOONCOANNN T OO R - NN NNNNNNNN TNONONNNNNNNOMM

rrrrrrrrrrrrrrrrrrrrrrrrrr

:::::::::::::::::::::

:::

L o R To R To N Te RToIn Bk k- SR Te M TeJR~ B To Y- g~ SRS SRS SIS S S 3R To N To - i Te N e N ToMTe NToS MU NToRToWTo NTo RToNToNToWTo NS 205 205 gis SRS g s dis gis A S 4
AL LI LACLAILLLLALLLIALLLICLLLLALCALLALLLLILCILLLLLLILLILLLLLL
EREEFREREERERREREEREEREkkEEEEREEEERREEREEEREEREEEREEREEREREEREREEREREE
CLLLCLLLLLLLCLLLLEILICILLLILCLLLCLLILCLLLCLCLLLLCLLLLLLLILILCLCLLCKL
0000000000060 00000G0000000008000000000008008488000A0G0
0000000000 C000000000000R0O000000000000000Q0O00000
WONONO~ANMITNONDNO—~NNMITLONOOIO—ANMINONDNO~ANMITOONRNODDIO—NM
ONONOMNMTSTITGTITTTTTOOLDOLOWIDWOOOOOODOOWOWWOWNNINISEINNININNNO©O©O®

173

840 DATA 4,12,1,1,4,8,5,0
850 DATA 5,1,4,10.4.8,7.3
860 DATA 5,1,4,10,4,7,7,0
870 DATA 5,1,4,8,4,5,7,0
880 DATA 5,3,4,7.4,3.7.4
890 DATA 5,1,4,6,4,3,7,0
900 DATA 4,12,4,8,4,3,7,0
910 DATA 4,10,4,74,3,7,6
920 DATA 4,12,4,74,3,7,0
930 DATA 5,1,4,8,4,5,7,0
940 DATA 5,3,.4,8,3,12,7,6
8950 DATA 4,8,4,8,3,12,7,0
960 DATA 5,1,4,8,4,5,7,0
970 DATA 4,12,48,4,3,7,5
980 DATA 4,12,4,5,4,3,7,0
$90 DATA 4,10,4,7,4,3,7,0
1000 DATA 4,8,4,8,3,12,7,7
1010 DATA 4,8,4,8,3,12,7,7
1020 DATA 4,8,4,8.3,12,7,7
1030 DATA 4,8.4,8,3,12,7,7
1040 DATA 4,8,4,8,3,12,7,7
1050 DATA 4.8,4,8,3,12,7,0
1060 DATA 1,1,1,1,1,1,0.0

The last tune in this series is “Bobby Shafto’,again in three part harmony but this
time with the envelope command being used for some of the arrangement. It is a
matter of opinion as to whether or not the use of the envelope command improves
the result.

10 L=1: P=4000

15 REPEAT

20 PLAY M,O,L,P

30 READ AB.C.D.EF.GHJKM

40 MUSIC 1,AB.C

50 MUSIC 2D.EF

60 MUSIC 3.G,H.J

70 PLAY KO.L,P

80 WAIT 15

90 UNTIL k=8

95 PLAY 0,0.0,0
100 DATA 4,11,0,4,3,0.3,11,0.7,
110 DATA 4,11,0.4.4,0,4,1,0,7,0
120 DATA 4,11,0.4.6,0,4,3,0,7,0
130 DATA 5,4,0.4,8,0,4,4,0,7,0

0

174

~NOO © [{e] (o]
o NAR,QRONQOQY ©ON0REQRYONYQ
Q o OO COANRNNGNNNN NNGNNRNINNNN SN

000000 OT O 009 _ 00009 O ~——2000~0000Y0C0~0000000—0O

.~ .

RemCORRRRNGORORRRORNRR e QORgMMME NS R g T m o

VA eI N R SRS L RIS e, OO O OO0 ™ o e
R P N L L D R R LoD b 6 . Sihafupprpubupupul=fe i pr iR ibepubagy pups
CHO¢~rO0BFR0RMNYtOR0BT~ 220 ¢ 000 CrimramEmmmE®anm®mmn®gm

T oYY 00 Y0 000 Y dY oYY Oo-rrr0000-0000000~000C0000—~0

:::

175

WooON Or~ONS ®m_ mo o0 ~O MO OONO
NNNNNONNNNN NN MmOl S R NN~ NONKNKNN
™~~~ ™~ 3 N

,,,,, SRR Lo 2o onnn~ NN
OOooomoooomwwomOOOMWWWOJOWOMMJOOOOMWWOOOOMMOOO%OO
Lo gl ol ol o L el il ol . . T L ol -— N e S i YT e a N L gl aadk ol ool U RN I A AL
Pt OO TR mmMOOC S dorr e o 000l GmME YO rro O OMMM o

OO MMM T Nl S el T e O YN 5T MO g o X =)
e Iy e e I - 00O SR o e D e e R T T
NNy 000 NN 00~ NN 00000 Mm-St """ C

-

QO0O0000 e OO OO0 T (M "t PO0 000w . "0 g
CETOSTTOEEOE N e e ST T gg f L L A e e Wi e g 000

ﬁ563£ﬂ4«444JJ33JJJA@&AA««AAAJJJJJJJ&ﬁA@ﬁ@AA110J&0
LTS To Te = R MR RN s A T T RESE SN A A RIS ARSI AR ot
000000 Frrer e " 0000."mO000~-~ "I mO000O0""0000co "X dtgt <

rrrrrrrrrrrrrrrrrrrrr

rrr

AL AACACALCILAICLIALALCLICLAILICALACLIAICALALILALALLLLqLLLILLLALLL
EFeEkEEEEEEREEREREREREREREREEREREREREREREREREREEREREERERERERERERERERERERERERERERRRE
CICIIALLLLILILCLLCLAILCLLIALIAILCLILILLLILALILLIALILILLLILLLLLCLCLCLLCLLCL
[afaYalaYaRaRaYaFafaaYaFalajalaYolafalajuiaYaFalaYajaYaaYaYalaTaFaYalaYalaYaFafaYaalaFaYalalalea)
[eXelooReolololoJoloNoleloRoRoloZoloRolojolodolofoNoRoReloRaloloYoJoRololololaNoloYoRoloJeloNoNoXeo]
NMTOONONC~NOITNONOAQ NN ITUNONODO~ANNTNONDNO—NNTONONRIDO —
COOOOWOONNINANNNANNNNANNOORCOODODDBINIDNINOOODNOCOOOOCOOO v

Ll i ol oodl ol ol i el B B

~ 707770

~ NN

NO ~NQ NONQ _ mORNNNRoOSoG

NS ~ne NN NANNNCONNSSesR229

oo o NNoo ocooo0oo CO00OMMO0rmrmee - - o

LLOO00ORNO0RORKNAOARNRRN S mO000 - m o0 e e O
NN NG N E EGoNe g0 RRAQQARREO L RN - mr M@
000000 ol 0 g T Y e ettt T I T MM S S
¢ 7O~ T IO O v LT, W NN o o DS [sYoNoYeo) -
< 200 0O of ,1.144,4,4,0011110000 SO0 00O0O0 ™ — =
OO0 T b LN b OO0 . o NN N - 11111111001111111111 -
1144404411334000 Rt et it I -—
I e e R BRIl o N o Rl 1 N W U K o R R
R R R B e R ALt L. R v Dl gl gl B RPN
A S A e e O A RN, B . s B = R D= PP P PP B
OO N NN OV N

LLLLLIAILILILLCLLLLCLCLLLLLLLLLLLLLLLLLLLLLLLL
FEEFEEEREEREEREEEREEREERERERRERERRRERREREREREE R R R R~
CILILLCCLLLLILILLLLLLLLLLLALILCLLLLLLCLLLLILILLCL L
sjajaisjafajaisjaliafa¥sYalaYalalaYaYalosYalaYalaYalolaYalafaaYaYalalafafalals)
ojojelolojololololololololajololoRololoololoNodaJoTotoXoloJoNoYoYoRoSoRo o Xo)
NOOIFTOVOROONO—~NOITHLONDNO~NMNMINONODNO~NMNIHLONDODNO
e e e NANNANNNNNNNOOOOOOOOOMOOOS It F D
At ani el alh el anli ol 2k 2 el aall ol i ol el ol i i il el S i IRl i R R I o e

‘worked through’, from assembly language to hexadecimal code, to demonstrate
177

We shall now look at some simple machine code programs. These have all been
the method. The first is a simple screen access type program.

Notice that because of the bar’s rest, the usual way of terminating the tune will not

do and another way has to be found.
8.5 Simple Machine Code.

Assembly location code

LDX @0 400 A2 00
LABEL STX#BBAA 402 8E AA BB

INX 405 E8

JMP LABEL 406 4C 02 04

To enter this code into the machine, a special program has to be used:-

10 1=0

20 REPEAT

30 READ A

40 POKE # 400+L,A

50 I=I+1

60 UNTIL A=#FF

70 DATA #A2, #0,#8E,#AA #BB
80 DATA #E8, #4C #02,#04, #FF

When run this program puts the machine code one just written into memory at
location #400 onwards. To run the machine code program type CALL
#400<RETURN>. All this program does is to cycle the first character location on
the screen through all possible values. This will probably make your picture jump
about a bit, but it can be stopped by using the hidden reset key.

This program can be used tofill the screen with any desired character very quickly.

Assembly Location Code
START LDA @#AA 400 A9 AA
STA#50 402 85 50
LDA @#8B 404 A9 BB
STA#51 406 85 51
INP LDY @0 408 A0 00
LDA @#41 40A AS 41
POKE STA (#50)Y 40C 91 50
INY 40F c8
CPY @#25 40F CO 25
BCS INCR 411 BO 03
JMP POKE 413 4C0C 04
INCR CLC 416 18
LDA #50 417 A5 50
ADC @40 419 69 28
STA #50 418 85 50
LDA # 51 41D A5 51
ADC #0 41F 69 00
STA #51 421 85 51
CMP @#CO 423 c9 co
BCS END 425 BO 03
JMP INP 427 4C 08 04
END RTS 42A 60

178

And again, this program is entered into the machine using POKE to achieve the
desired result. As it stands, this program will fill the screen with the letter ‘A", If
another character is required, the contents of location #408 must be changed.
From the ASCIl character set, the “#' sign is represented by the number 35. So
type POKE #40B,35<RETURN> followed by CALL #400<RETURN> and you
will have a screen full of hash signs.

The Branch instructions in the above example had their arguments calculated by a
standard Assembler. Inline 7, the BCS instruction has an argument of 03 meaning
branch forward 3 bytes if the carry is set. To see how this number is arrived at,
remember that the computer loads the instruction BO, meaning BCS, then
increments the program counter, then decodes the instruction. The number 3 is
then loaded and the P.C again incremented so that itis now pointing to the byte 4C.
The byte labelled INCR is the third byte along from this.

To complete this description of branching instructions a short example of
branching backwards follows:-

START LDX @0 400 A2 00
LABEL STX #BB80O 8E 80 BB

INX E8

BNE LABEL DO FA

BEQ LABEL FO F8

Again, when the instruction DO is met, the program counter is pointing to the byte
FA. This is loaded and the program counter incremented to point to FO. Now the
distance in bytes between FO and LABEL is 6. Thus the argument is FA
representing -6. Remember that FF=-1, thus FE=-2, FD=-3, FC=4, FB=-5,
FA=-6.

This sort of utility can be combined with the special ‘undefined’ commands left for
the user to play with. Since we now have a useful command built in to the ORIC at
#400, add the following:- DOKE #2F5,#400 <RETURN>. Now the 'l key will call
the routine. Type |IRETURN and the screen is again filled with hash signs.

A more useful utility is a renumber program written in machine code which can be
POKE'd into memory and then called using the !" directive. This allows programs
to be developed without having to worry about adding on alump of code, or finding
out the start address of that code after each renumber. A word of warning first,
however. When dealing with a program like this, where there is a lot of machine
code, type the program in and save it onto cassette before running it. Now if
anything goes wrong, the original program can be recovered and checked for
errors. This is a good tip for any long program, not just those which contain a lot of
machine code.

10 1=0
20 REPEAT
30 READ A

179

40 POKE (#400+1),A

50 r=i+1

60 UNTIL A= #FF

70 DOKE #2F5, #400

80 DATA #A9, #£01 #85, #50, #A9, #05,#85

90 DATA #5171, #A9, #00, #85, #53, #85, #55
100 DATA #A9, #0A, #85, #52, #85, #54, #A0
110 DATA #00, #B1, #50, #85, #56, #C8, #81
120 DATA #50, #85, #57, #18, #A5, #50, #69
130 DATA #02, #85, #50, #A5, #51, #69, #00
140 DATA #85, #51, #A0, #00, #A5, #52, #91
150 DATA #50, #C8, #A5, #563, #91, #50,#18
160 DATA #AS5, #64,#65, #52, #85, #5652, #A5
170 DATA #5655, #65, #53, #85, #53, #Ab5, #56
180 DATA #85, # 50, #F0, #07, #Ab, #57, #85
190 DATA #51, #4C, #14,#04, #A5 #57, #D0
200 DATA #F7, #60, #FF

in case of error, an assembly listing is included in Appendix D.

After this program has been typed in, save it and then RUN it. Nothing dramatic
happens since all it does is set up a machine code program starting address $400
and set up the indirect address of the I’ command to point to it. Renumber a few
lines or add some lines as 13 REM TEST and so on and then type I<RETURN>.
The correct response is for the computer to reply ‘Ready’ aimost immediately. If it
does not, something has gone awry and you must recover by using the hidden
switch underneath the machine, or by switching off and starting again. if you have
to do the latter, you can be sure you have some reaily bad mistakes in there
somewhere. Check through the listing until you find the errors and try again.

You will have noticed that this program does not give you any choice as to the line
numbers to be used. Those of you with some skill in machine code may like to use
the published listing and modify it, so that the start number and step can be
separate, and hence individually adjustable. At present ‘start line number’ = 'step’
= 10 and both must be changed together. This can be done by POKEing #40F
with the required number. For example POKE #40F,1<RETURN> followed by
{<RETURN> should resuit in a program numbered 1, 2, 3 etc.

A further modification would be to automatically change the line number
referenced by GOTO and GOSUB commands. Unfortunately the way the ORIC
stores its programs makes this very difficult as a stand alone program. The
problem is that referenced line numbers are stored as ASCII text not as binary
numbers. This means that if a referenced number had to be changed from 5, say,
to 10, the number of bytes used would increase, hence the whole program would
have to be moved up through memory. This in turn means that all the start of next
line addresses would have to be changed also. While this sort of thing is nat
impossible, the program needed would be far too long for this essay.

As a final point, look at the way the DATA statements have been arranged. This

180

method allows easy checking of the statements and gives a neat layout to the
whole program.

The final offerings in this chapter use parts of the ORIC’s operating system t¢
achieve their ends. The first is a real time clock program which puts up a 24 hour
readout in the top right hand corner of the screen. This readout is fairly permanent
since the program is actually all in machine code and hence cannot be stopped or
overwritten, However when other programs are loadad from or saved to cassette,
the clock stops because during tape transfers the ORIC disables interrupts. The
way the clock program works is to divert the normal interrupt through a machine
code routine stored at location #B000O which does all the work, then returns
control to the normal interrupt routine. This is possible because both interrupts are
‘soft-vectored’ through RAM locations as described in chapter 7. It is therefore
fairly easy to divert them and use them for our own purposes.

The ORIC has aninternal timer which interrupts it every 10mS. This timer is part of
the 6522 chip and its operation has been described in chapter 3. The real time
clock program sets up a counter to determine the 100th interrupt and increments
the clock on every such count.

10 1=0

20 REPEAT

30 READ A

40 POKE (#400+1),A

50 I=1+1

60 UNTIL A=#FF

70 DATA #48,#A9 #C8,#85,#08,#A9

80 DATA #BB,#85,#09, #A9,#63,#85

90 DATA #O0A,#78,#A9,4#00,#8D,# 29
100 DATA #02,4 A9, #B0, #8D,#2A,#02
110 DATA #58,#68, #60, #FF
120 1=0
130 REPEAT
140 READ A
150 POKE (#BO0O+I),A
160 I=I+1
170 UNTIL A=#FF
180 DATA #48, #98, #48, #8A, #48,#C6,#0A
190 DATA #10, #55, #A9, #63, #85,#0A #A5
200 DATA #04, #18, #69, #01, #C9, #3C, #80
210 DATA #05, #85, #04, #4C, #43,#B0, #A9
220 DATA #00, #85, #04, #A5,#05,4 18,#69
230 DATA #01,#C9, #3C, #80, #05, #85,#05
240 DATA #4C, #43, #B0, #A9, #00,#85,#05
250 DATA #A5,#06,# 18,#69,#01,#C9,#18
260 DATA #BO, #05, # 85, #06, # 4C, #43, #BO
270 DATA #A9,#00, #85, #06, #A5.# 06,#A0
280 DATA #00, #20, #66, #B0, #A9,#2F, #20
290 DATA #81,#BO0, #A5,#05, #20,#66,#B0

181

300 DATA #AS,#2F,#20,#81,#B0, #A5,#04
310 DATA #20,#66,#B0,#68,#AA #68,#A8
320 DATA #68,#4C,#03,#EC,#A2,#00,#£8
330 DATA #38,#E9,#0A #10,#FA #CA, #69
340 DATA #0A,#09,#30,#85,#07,#8A,#09
350 DATA #30,#20,#81,#B0,#A5,#07.#20
360 DATA #81,#B0,#60,#91,#08,#C8,#60
370 DATA #FF

380 CLS

390 INPUT "HOURS=";H

400 IF HO THEN 390

410 IF H23 THEN 390

420 POKE 6,H

430 INPUT"MINUTES=";M

440 IF MO THEN 430

450 {F M59 THEN 430

460 POKE 5.M

470 POKE 4,0

480 PRINT'PRESS ANY KEY TO START”

490 GET A#

500 CALL #1400

510 END

For V1.1 change line 120 to
120 DATA #FF,#F0,#07 #AA #20,#7C #F7,#C8
to accommodate the differences between the two systems.

When run, this program sets up two machine code segments in memory, one
starting at#400 and the other at #8000. The first segment changes the interrupt
vector at locations #229 and #22A to point to the code at #B000. The program
puts these code segments in place before setting the clock time in lines 380 to
470, then the call to #400 actually starts the clock.

For V1.1 change line 90 to:

S0 DATA #0A,#78,#A9,#00,#8D,#45

and line 100 to:

100 DATA #02,#A9,#B0,#8D,#46,#02

and line 320 to

320 DATA #68,#4C,#22 #EE,#A2,#00,#E8

These changes are necessary because the soft vectors in V1.1 are different.

To prevent errors, an assembly language listing is included in Appendix E.
The final program uses the system call at #CC1 2 to print a character on the screen

to demonstrate a method of communicating with a user from inside an assembly
language program. The message printed is, in this instance, irrelevant.

182

5 GRAB

10 1=0

20 REPEAT

30 READ A

40 POKE (#B100),A

50 I=l+1

60 UNTIL A=#F3

70 DATA #20,#13, #B1,#0C, # 48, #45, 4 4C

80 DATA #4C,#4F, #20,#57, # 4F, #52, #4C

90 DATA #44,#0A, #0D,#FF, # 60, #18, #68
100 DATA #69,#01, #85,#09, # 68, #69, #00
110 DATA #85,#0A, #A0,#00, # B1,#09, #C9
120 DATA #FF, #F0, #07,#20,#12, # CC, #C8
130 DATA #4C,#20, #B1,#98,# 18, # 65, #09
140 DATA #85,#09, #A5,#0A, # 69, # 00, # 48
150 DATA #A5,#09, # 48, #60, # F3
160 PRINT “PRESS ANY KEY WHEN READY"
170 GET A#
180 CALL #B100
190 END

The GRAB command is necessary because without it, the ORIC will overwrite the
machine code program in this area of memory. After this program has been run,
any call to#B 100 will result in the screen being cleared and the message "HELLO
WORLD" being printed out on the top line of the screen.

Again the whole listing is included in Appendix F.

The subroutine WRITER demonstrates the use of the stack to force a new return
address for a subroutine as mentioned in chapter 6.

183

APPENDIX A

Control Codes

Control CHRS$ Code Effect
Character

D 4 Auto double height

F 6 Key click toggle

G 7 Bell

H 8 Horizontal tab

} 9 Backspace

J 10 Line feed

K 11 Vertical tab

L 12 Clear screen

M 13 Return

N 14 Clear row

P 16 Printer toggle

Q 17 Cursor toggle

S 19 V.D.U. toggle

T 20 Caps Lock

] 28 Protected column toggle

Serial Attributes- Colour

Foreground Background
Colour Esc code value Esc code value Paper/ink
BLACK @ 0 P 16 0
RED A 1 Q 17 1
GREEN B 2 R 18 2
YELLOW c 3 S 19 3
BLUE D 4 T 20 4
MAGENTA E 5 U 21 5
CYAN F 6 \ 22 6
WHITE G 7 w 23 7

To print red letters use PRINT” "CHR#{27)“ATEXT" and the word ‘TEXT" wili
appear in red. The space has to be printed in V1.0 to prevent the escape code being
printed in column-1.

184

To produce a blue background in V1.0 use PRINT CHR#{28)CHR#{27) "T". In
V1.1 use POKE to put background attributes in place at the beginning of the line.

Combining under V1.0 to give red letters on a blue background results in:-
PRINT CHR#{28)CHR#(27) " T"CHR #(27) ATEXT".

Use string concatenation to make this usable as:-

10 A#=CHR#(28)+CHR#(27)+"'T"

20 A#=A#+CHR#(27)+"A"
30 PRINT A#"HELLO THERE"

Serial atrributes- Non-colour

Function Esc.code Value
Normal Std H 8
Normal Alt ! 9
Double Ht Std J 10
Double Ht Alt K 11
Flashing Std L 12
Flashing Alt M 13
D/H Flash Std N 14
D/H Flash Alt 0 15
Text 60 Hz X Strange
Text 60 Hz Y results
Text 50 Hz Z unless
Text 50 Hz { you know
Gra 60 Hz : exactly what
Gra 60 Hz } you are
Gra 50z ~ doing
Gra 50 Hz < here.

To print double height flashing characters in any colour use:-
PRINT CHR#(4)" "CHR#(27)"N"CHR#(27)"ATEXT"
or using concatenation:-

10 A#=CHR#(28)+CHR #(27)+"T"

20 A#=A#+CHR # (4)+CHR# (27)+"'N"
30 A#=A#+CHR#(27)+"A"

40 PRINT A#“HELLO THERE”

50 PRINT CHR#(4)

185

Line 50 is needed to stop the double height printing from carrying on. This
program will produce a flashing red double height "HELLO THERE" on a half biue
half white background. To put the flashing characters on a completely blue
background modify the program to:-

10 A#=CHR#(28)+CHR # (27)+"T"
20 A#=A#+CHR #(4)+CHR#(27)+"N"
30 A#=A#+CHR# (27)+"A"

40 PRINT A# HELLO THERE”

50 PRINT CHR#(4)

60 PRINT A#

For V1.1 the CHR#{28) can be omitted because it has no effect in this system. To
put a new background attribute into the protected column POKE has to be used.

186

ABS
CHR#
CLOAD
CURSET
DEF
DRAW
FALSE
STEP
GET
HEX#
THEN
INT
LET
LOG
NEW
PEEK
PLOT
POS
RELEASE
RETURN
SCRN
SOUND
STR#
TROFF
VAL

APPENDIX B

Token Table

ASC
CIRCLE
CONT
CSAVE

END
FILL
POS
GOsuB
HIMEM
ELSE
KEY#
LIST
LORES
ON

Pt
POINT
PRINT
REM
RIGHT#

SPC
TAB
TRON
WAIT

EC CALL
AD CLEAR
BB COS
B7 DATA
C4 DIM

AF FOR
DB NEXT
9B GOTO
9E HIRES
C8 INK

F1 LEFT#
BC LLIST
89 MIiD#
B4 PAPER
EE PING
F3 POKE
BA PULL
9D REPEAT
F5 RND
D6 SHOOT
C5 SaR
C2 TAN
84 TRUE
B5 ZAP

187

Ab

CHAR
CLS
CURMOV
DEEK
DOKE
EXPLODE
TO

FRE
GRAB

IF
INPUT
LEN

LN
MuUsSIC
PATTERN
PLAY
POP
READ
RESTORE
RUN

SIN
STOP
TEXT
USR

APPENDIX C

OP-CODE

INSTRUCTION

BRK

ORA (IND.X)
Future
Future
Future

ORA Zero Page
ASL Zero Page
Future

PHP

ORA Imm
ASL A
Future
Future

ORA Abs
ASL Abs
Future

BPL

ORA {IND) Y
Future
Future
Future

ORA Zero Page X

ASL Zero Page,X
Future

CcLC

ORA AbsY
Future

Future

Future

ORA Abs, X

ASL Abs, X
Future

188

6502 OP-CODES.

INSTRUCTION

JSR

ANDF (IND,X)
Future

Future

BIT Zero Page
AND Zero Page
ROL Zero Page
Future

PLP

AND Imm

ROL A

Future

BIT Abs

AND Abs

ROL Abs
Future

BMI

AND (IND} Y
Future

Future

Future

AND Zero Page, X
ROL Zero Page,X
Future

SEC

AND AbsY
Future

Future

BIT Abs

AND Abs, X

ROL Abs, X
Future

RTI

EOR {IND<X)
Future

Future

Future

EOR Zero Page
LSR Zero Page
Future

PHA

EOR Imm

LSR A

Future

JMP

EOR Abs

LSR

Future

BVC

EOR (IND} Y
Future

Future

Future

EOR Zero Page. X
LSR Zero Page X
Future

CL!

EOR Abs,Y
Future

Future

Future

EOR Abs. X
LSR Abs,X
Future

189

RTS

ADC (IND.,X)
Future

Future

Future

ADC Zero Page
ROR Zero page
Future

PLA

ADC Imm

ROR A

Future

JMP Ind

ADC Abs

ROR Abs
Future

BVS

ADC (IND) Y
Future

Future

Future

ADC Zero Page,X
ROR Zero Page, X
Future

SEl

ADC Abs,Y
Future

Future

Future

ADC Abs,X
ROR Abs,X
Future

80
81

82
83
84
85
86
87
88
89
8A
8B
8C
8D
8t
8F
S0
91

92
93
94
95
86
97
98
29
9A
9B
ac
9D
9E
9F

Future

STA (IND.X)
Future

Future

STY Zero Page
STA Zero Page
STX Zero Page
Future

DEY

Future

TXA

Future

STY Abs

STA ABS

STX Abs
Future

BCC

STA (IND)Y
Future

Future

SYT Zero Page, X
STA Zero Page X
STX Zero Page,Y
Future

TYA

STA AbsY
TXS

Future

Future

STA Abs, X
Future

Future

190

LDY lmm

LDA (IND,X)
LDX Imm
Future

LDY Zero Page
L.LDA Zero Page
LDX Zero Page
Future

TAY

LDA Imm

TAX

Future

LDY Abs

LDA Abs

LDX Abs
Future

BCS

LDA (IND) Y
Future

Future

LDY Zero Page.X
LDA Zero Page,X
LDX Zero Page,Y
Future

CLv

LDA Abs,Y
TSX

Future

LDY Abs X
LDA Abs,X
LDX Abs,Y
Future

CPY Imm

CMP (IND,X)
Future

Future

CPY Zero Page
CMP Zero Page
DEC Zero Page
Future

INY

CMP Imm
DEX

Future

CPY Abs

CMP Abs

DEC Abs
Future

BNE

CMP (IND} Y
Future

Future

Future

CMP Zero Page X
DEC Zero Page X
Future

CcLD

CMP Abs,Y
Future

Future

Future

CMP Abs, X
DEC Abs, X
Future

191

CPX imm

SBC {IND,X)
Future

Future

CPX Zero Page
SBC Zero Page
INC Zero Page
Future

INX

SBC Imm

NOP

Future

CPX Abs

SBC Abs

INC Abs
Future

BEQ

SBC (IND) Y
Future

Future

Future

sbe Zero Page X
INC Zero Page X
Future

SED

SBC ABs,Y
Future

Future

Future

SBC Abs, X
INC Abs X
Future

APPENDIX D

Renumber Source Listing

0050
0051
0052
0053
0054
00556
0056
0057
0000

0400:A9 01
0402:85 50
0404:A9 06
0406:85 51
0408:A9 00
040A:85 53
040C:85 55
040E:AS OA
0410:85 52
0412:85 54
0414:A0 00
0416:B1 50
0418:85 56
041A:C8
041B:81 50
041D:85 57
041F:18
0420:A5 50
0422:69 02
0424:85 50
0426:A5 51
0428:69 00
042A:85 51
042C:A0 00
042E:A5 52
0430:91 50
0432:C8

AL

AH

KNL
KNH
SNL
SNH
TML
TMH

START

BACK

EQU #50
EQU #51
EQU #52
EQU #53
EQU #54
EQU #55
EQU #56
EQU #57

PROGRAM STARTS
ORG #400
LDA@S$1
STA AL
LDA@$68
STA AH ;set up start address
LDA@O
STA KNH
STA SNH
LDA @10
STA KNL
STA SNL ;set up base=10;step=10
LDY @0
LDA (AL)Y
STA TML
INY
LDA {AL) Y
STA TMH ;get address of next line
CLC
LDA AL
ADC@2
STA AL
LDA AH
ADC®0
STA AH ;add 2 to add. of current line
LDY@o
LDA KNL
STA (AL) Y
INY

192

0433:A5 53 LDA KNH

0435:91 50 STA (AL) Y ; set 1stline no. to 10
0437:18 CLC

0438:A5 54 LDA SNL

043A:65 52 ADC KNL

043C:85 52 STA KNL

043E:A5 55 LDA SNH

0440:65 53 ADC KNH

0442:85 53 STA KNH ;add step to base

0444:A5 56 LDA TML

0446:85 50 STA AL

0448.F0 07 BEQ MAYBE

044A:A5 57 LDA TMH

044C:85 51 CONT STA AH ;putadd. of next line into current add.
044E:4C 14 04 JMP BACK

0451:A5 57 MAYBE LDA TMH

0453:DO F7 BNE CONT

0455:60 RTS

193

APPENDIX E

Real Time Clock for ORIC

See section 8.5 for details

0400:48

0401:A9 C8
0403:85 08
0405:A9 BB
0407:85 09
0409:A9 63
0408:85 0A
040D:78

040E:AS 00

0410:8D 29 02

0413:A9 BO

0415:8D 2A 02

0418:58
0419:68
041A:60

B000:48
8001:98
8002:48
BOO3:8A
B004:48
BO05:C6 OA
B007:10 55
BOOO:A9 63
BOOB:85 0A
BOOD:AL 04
BOOF:18
B010:69 01
B012:C9 3C
B8014:B0 05
B016:85 04

8018:4C 43 BO
BO1B:AS 00 MINS

B01D:85 04
BO1F:A5 05
8021:18

B022:69 01
B024:C9 3C
B026:BO 05

ORG #400
PHA

LDA @#C8
STA 8
LDA @#BB
STA S
LDA @99
STA #A
SEIl

LDA @0
STA#229
LDA @#B0O
STA#22A
CL!

PLA

RTS
ORG#B000
PHA

TYA

PHA

TXA

PHA

DEC #A
BPL NOTYT
LDA @99
STA #A
LDA 4
CLC

ADC @1
CMP @60
BCS MINS
STA 4
JMP SHOW
LDA @0
STA 4
LDA 5
CLC

ADC @1
CMP @60
BCS NHRS

;save acc
;screen add lo

;Set up indirection lo
;Screen ad hi

;Set up indirection hi

;Set up counter

N #A

;Disable interrupts
:Redirect interrupt vector
;Ditto{STA@45 for V1.1)
;ditto

;ditto(STA @46 for V1.1)
;Re-enable interrupts
;Restore acc.

;Return whence you came
;Origin for interrupt routine
;Save registers

.ditto

;ditto

;ditto

.ditto

;decrement & test counter
;1f not negative do nothing
;Reset counter

;ditto

;Get seconds

;Add one

;Has one minute gone by?
;Yes

:No

;Tell the world

;Reset seconds counter
;ditto

;Get minutes

;Add one

;Has one hour gone by?
;Yes

194

B028:85 05
BO2A:4C 43 BO
B(O2D:AS8 00 NHRS
BO2F:85 05
B031:A5 06
B033:18
B034:69 01
B036:C9 18
B038:B0 05
BO3A:85 06
B0O3C:4C 43 BO
BO3F:A9 00 MN
B041:85 06
B043:A5 06 SHOW
B045:A0 00
B047:20 66 BO
BO4A:A9 2F
B04C:20 81 BO
BO4F:A5 05
B051:20 66 BO
B065:A9 2F
B056:20 81 BO
B059:A5 04
BOS5B:20 66 BO
BOGE:68
BOSF:AA
B060:68
B0O61:A8
B062:68
B063:4C 03 EC
B066:A2 00 CONV
B068:E8 GOON
B069:38
BO6A:E9Q OA
BO6C:10 FA
BO6E:CA
BO6F:69 OA
B071:09 30
B073:85 07
B0O75:8A
B076:09 30
B078:20 81 BO
BO7B:A5 07
BO7D:20 81 BO
B080:60
B081:91 080UTPT
B083:C8
B084:60

0000

STA 5

JMP SHOW
LDA @0
STA 5

LDA 6

CcLC

ADC @1
CMP @24
BCS MN
STA 6
JMP SHOW
LDA @0
STA 6

LDA 6

LDY @0
JSR CONV
LDA @#2F
JSROUTPT
LDA 5

JSR CONV
LDA @#2F
JST OUTPT
LDA 4

JST CONV
PLA

TAX

PLA

TAY

PLA
JMP#ECO3
LDX @0
INX

SEC

SBC @10
BPL GOON
DEX

ADC @10
ORA @#30
STA 7

TXA

ORA @#30
JSROUTPT
LDA 7
JSROUTPT
RTS

STA (8) .Y
INY

RTS

END

;No

:Tell the world again
;Reset minutes
;ditto

:Get hours

;Add one

;Has one day gone by?
;Yes

;no

:Tell the world again

;Reset hours

;ditto

;Get hours

;Reset display counter
;Display hours

;Putin/

;See above

;Display minutes

;ditto

;Another /

;ditto

;Get seconds

;Display seconds

;Restore registers

;ditto

;ditto

;ditto

;ditto

;Go to ORIC interrupt routine
;Set counter to zero

;Add one to it

;Set carry ready for subtraction
;Subtract 10

;1 still positive do it again
;Negative so decrement counter
;Restore number

;Add ASCHi header

;Save it

;X holds, no. of tens

;Add ASCI header

;Print it

;:Get units

;Print them

;End of story

;Put code in place on screen
;increment position counter
;Return whence you came

195

APPENDIX F
Writer Subroutine for 6502

systems
cci2 WRTCH
CCi2 WRTCH EQU #CC12 (F77C for V1.1)
0009 RAMPO EQU #9
Q00A RAMP1 EQU #A
B100 ORG#B100
B8100:20 13 B1 START JSR WRITER
8103.0C DB #0C
B8104:48 45 4C 4C DB “HELL”
8018:4F 20 57 4F DB "O WO
B10C:52 4C 44 DB “RLD”
B10OF.0A OD FF DB #0A #0D #FF
B112:60 RTS
B113:18 CLC ;REMOVE UNWANTED BIT
B114:68 PLA ;GET RETURN ADDRESS
B115:69 01 ADC @1 ;ADD | BECAUSE RETURN
B117:85 Q08 STA RAMPO ;JADDRESS IS ONE TO FEW
B8119:68 PLA ;GET REST OF ADDRESS
B11A:69 00 ADC @0 ;ADD CARRY BIT IF ANY
B811C:85 OA STA RAMP1 (SAVE IT
B11E:AQ0 OO LDY @0 ;SET COUNTER TO ZERO
B120:B1 09 WROUT LDA (RAMPO),Y ;FETCH CHARACTER
B122:C9 FF CMP @#FF ;IS THIS THE LAST?
B124:F0 07 BEQ WREND ;YUP h V1.1 put TAX
B126:20 12 CC JSR WRTCH ;NOPE;PRINT lTbefore.th?s instruction)
B129:.C8 INY JINCREMENT COUNTER
B12A:4C 20 B1 JMP WROUT ;GO BACK ROUND AGAIN
B12D:98 TYA ;FETCH NUMBER OF

CHARACTERS

B12E:18 CLC ;CLEAR UNWANTED BIT
B12F.:65 09 ADC RAMPO ;ADD START ADDRESS
B131:85 09 STA RAMPO
B133:A5 0A ADC @0 ;ADD CARRY BIT IF ANY
B137:48 PHA ;PUSH ON TO STACK
B138:A5 09 LDA RAMPO ;FETCH REST OF ADDRESS
B13A:48 PHA ;PUSH THAT TOO
B13B:60 RTS ;GO TO PUSHED ADDRESS
0000: END ;1S NIGH

196

APPENDIX G

Cassette Loader Program
(only for V1.1)

0281:08
0282:78
0283:AD F9 FF
0286:C9 01
0288:D0 28
028A:AD B6 E4
028D:C9 A2
028F:DO 156
0291:A0 09
0293:B9 B5 02
0296:99 21 02
0299:88
028A:10 F7
029C:A9 21
029E:8D 45 02
02A1:A9 02
02A3:8D 46 02
02A6:4C 67 E8

02B1:00
02B82:4C B6 E7
02B5:B5 48
02B6:A9 00
02B8:8DB1 02
028B:68
02BC:4C 22 EE

THEN

HERE

AGAIN

GOsTO

NOW

ORG #281
PHP

SEI

LDA #FFF9
CMP @1

BNE NOW
LDA #E4B6
CMP @#A2
BNE GOSTO
LDY@9

LDA #02B5,Y
STA #0221,Y
DEY

BPL HERE
LDA @#21
STA #245
LDA @2

STA #246
JMP #E867
ORG #02B1
DFB 0

JMP #E7B6
PHA

LDA @0
STA#2B1
PLA

JMP #EE22

A

ABS
Arithmetic
Array
ASCH
ATN

BASIC

C

CALL
Cassette
CHAR
CHR$
CIRCLE
CLOAD
Ccos
CSAVE
CURMOV
CURSET

D
DATA
DEEK
DiM
DOKE
DRAW

FOR..NEXT

G

GATE ARRAY
GET

Graphics
GOsuB

INDEX

12
56
20
20
12

4.8

14

26
22
27
4.29
13
29
26
26

17
19
21
19
26

13

27
15
16

33
11
25
14

198

H
HIRES

l
IF..THEN
INK
INPUT
INT

K
KEY$

L
LEFTS
LEN
LIST
LN
LOG
LOOP
LORES

M
MID$
Modem
MUSIC

NEW

o]
ON...GOsuB
ON...GOTO

P
PATTERN
PAPER
PEEK
Peripherals
Pi

PLAY
PLOT
POKE

POP

26

18
25

13

12

23
23

13
13
16
24

23
28

19
19

27
25
19

13
28
25
19
15

POS

PRINT
Printer Port
PULL

R

READ

REM
Repeat...Until
RESTORE
RIGHTS
RND

RTS

S
SCRN
SGN
SIN
Sound
SOUND
SPC
SQR
STR$
String
Subroutines

T
TAB
TAN
TEXT
TRON

\"

VAL

Versatile
interface Adaptar

w
WAIT

NN

17

16
17
23
13
14

25

13
28
28
1
13
23
20
14

1
13
25
15

24
32

24

199

A message from the publisher

Sigma Technical Press is a rapidly expanding British publisher. We work
closely in conjunction with John Wiley & Sons Ltd. who provide excellent
marketing and distribution facilities.

Would you like 1o join the winning team that published these highly
successful books? Specifically, could you successfully write a book
that would be of interest to the new, mass computer market?

Our most successful books are linked to particular computers, and we
intend to pursue this policy. We see an immense market for books relating
to such machines as:

DRAGON

THE BBC COMPUTER
APPLE
TANDY
SINCLAIR
OSBORNE
ATARI

IBM PC
SIRIUS
NEWBRAIN
COMMOQDORE

and many others

if you think you can write a book around one of these or any other popular
computer — or on more general themes — we would like to hear from you.

Please write to:

Graham Beech

Sigma Technical Press
5 Alton Road,
Wilmslow,

Cheshire, SK9 5DY,
United Kingdom.

or, telephone 0625-531035

The Ultimate "How-To"
Book for the ORIC-1
and Atmos Computers

The ORIC-1 and ORIC-ATMOS are exciting and powerful
British computers with a dazzling specification.

With all of their available "add-ons" they are amazingly

versatile machines and yet, there are very few books about
them, still fewer that explain exactly how the ORIC computers
work - and how to squeeze more power out of them. This

book makes no assumptions — it takes you through ORIC BASIC
and explains how to extend the use of BASIC by using

system calls, machine code and the like. For the hardware
enthusiast, Henry Hicks literally takes the ORIC apart and

puts it back together again - explaining exactly what each

chip does. There is a full description of the ORIC's CPU — the
6502 chip - and how it relates to assembler language
programming. The needs of the more adventurous

programmer are also covered - you'll find many stimulating
hints and tips - including many advanced programming
techniques.

Importantly, a part of the book is concerned with communication
to other devices. Henry Hicks is an expert in this field

and explains, in simple terms, the uses of add-on hardware and
how to control it.

With or without an ORIC, you can't get by without £6.95
our range of computer books. Write for a catalogue

to:

Sigma Technical Press

5 Alton Road

Wilmslow
Cheshire SK9 5DY ISBN 0 905104 56 0

	Binder1.pdf
	Pg1
	Pg2
	Pg3
	Pg4
	Pg5
	Pg6
	Pg7
	Pg8
	Pg9
	Pg10
	Pg11
	Pg12
	Pg13
	Pg14

	Binder1.pdf
	Pg15
	Pg16
	Pg17
	Pg18
	Pg19
	Pg20
	Pg21
	Pg22
	Pg23
	Pg24
	Pg25
	Pg26
	Pg27
	Pg28
	Pg29
	Pg30
	Pg31
	Pg32
	Pg33
	Pg34
	Pg35
	Pg36
	Pg37
	Pg38
	Pg39
	Pg40
	Pg41
	Pg42
	Pg43
	Pg44
	Pg45
	Pg46
	Pg47
	Pg48
	Pg49
	Pg50
	Pg51
	Pg52
	Pg53
	Pg54
	Pg55
	Pg56
	Pg57
	Pg58
	Pg59
	Pg60
	Pg61
	Pg62
	Pg63
	Pg64
	Pg65
	Pg66
	Pg67
	Pg68
	Pg69
	Pg70
	Pg71
	Pg72
	Pg73
	Pg74
	Pg75
	Pg76
	Pg77
	Pg78
	Pg79
	Pg80
	Pg81
	Pg82
	Pg83
	Pg84
	Pg85
	Pg86
	Pg87
	Pg88
	Pg89
	Pg90
	Pg91
	Pg92
	Pg93
	Pg94
	Pg95
	Pg96
	Pg97
	Pg98
	Pg99

	Binder1.pdf
	Pg100
	Pg101
	Pg102
	Pg103
	Pg104
	Pg105
	Pg106
	Pg107
	Pg108
	Pg109
	Pg110
	Pg111
	Pg112
	Pg113
	Pg114
	Pg115
	Pg116
	Pg117
	Pg118
	Pg119
	Pg120
	Pg121
	Pg122
	Pg123
	Pg124
	Pg125
	Pg126
	Pg127
	Pg128
	Pg129
	Pg130
	Pg131
	Pg132
	Pg133
	Pg134
	Pg135
	Pg136
	Pg137
	Pg138
	Pg139
	Pg140
	Pg141
	Pg142
	Pg143
	Pg144
	Pg145
	Pg146
	Pg147
	Pg148
	Pg149
	Pg150
	Pg151
	Pg152
	Pg153
	Pg154
	Pg155
	Pg156
	Pg157
	Pg158
	Pg159
	Pg160
	Pg161
	Pg162
	Pg163
	Pg164
	Pg165
	Pg166
	Pg167
	Pg168
	Pg169
	Pg170
	Pg171
	Pg172
	Pg173
	Pg174
	Pg175
	Pg176
	Pg177
	Pg178
	Pg179
	Pg180
	Pg181
	Pg182
	Pg183
	Pg184
	Pg185
	Pg186
	Pg187
	Pg188
	Pg189
	Pg190
	Pg191
	Pg192
	Pg193
	Pg194
	Pg195
	Pg196
	Pg197
	Pg198
	Pg199

	Binder1.pdf
	Pg200

